Bernard S. Ogorzalek
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard S. Ogorzalek.
Journal of Geophysical Research | 2003
Andrew B. Christensen; Larry J. Paxton; Susan K. Avery; J. D. Craven; G. Crowley; David Carl Humm; H. Kil; Robert R. Meier; C.-I. Meng; D. J. Morrison; Bernard S. Ogorzalek; Paul Richard Straus; Douglas J. Strickland; R. M. Swenson; R. L. Walterscheid; Brian Charles Wolven; Y. Zhang
[1] The Global Ultraviolet Imager (GUVI) instrument carried aboard the NASA TIMED satellite measures the spectral radiance of the Earth’s far ultraviolet airglow in the spectral region from 120 to 180 nm using a cross-track scanning spectrometer design. Continuous operation of the instrument provides images of the Earth’s disk and limb in five selectable spectral bands. Also, spectra at fixed scanning mirror position can be obtained. Initial results demonstrate the quantitative functionality of the instrument for studies of the Earth’s dayglow, aurora, and ionosphere. Moreover, through forward modeling, the abundance of the major constituents of the thermosphere, O, N2, and O2 and thermospheric temperatures can be retrieved from observations of the limb radiance. Variations of the column O/N2 ratio can be deduced from sunlit disk observations. In regions of auroral precipitation not only can the aurora regions be geographically located and the auroral boundaries identified, but also the energy flux Q, the characteristic energy Eo, and a parameter fo that scales the abundance of neutral atomic oxygen can be derived. Radiance due to radiative recombination in the ionospheric F region is evident from both dayside and nightside observations of the Earth’s limb and disk, respectively. Regions of depleted F-region electron density are evident in the tropical Appleton anomaly regions, associated with so-called ionospheric ‘‘bubbles.’’ Access to the GUVI data is provided through the GUVI website www.timed.jhuapl.edu\guvi. INDEX TERMS: 0310 Atmospheric Composition and Structure: Airglow and aurora; 0355 Atmospheric Composition and Structure: Thermosphere—composition and chemistry; 0358 Atmospheric Composition and Structure: Thermosphere—energy deposition; 2407 Ionosphere: Auroral ionosphere (2704); KEYWORDS: airglow, aurora, ultraviolet, imaging, satellite, atmosphere
Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV | 2002
Larry J. Paxton; D. J. Morrison; Y. Zhang; H. Kil; Brian Charles Wolven; Bernard S. Ogorzalek; David Carl Humm; C.-I. Meng
Operational sensors are designed and intended to reliably produce the measurements needed to develop high-value key environmental parameters. The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) is slated to fly on the next five Defense Meteorological Satellite Program launches (beginning with the launch of F16 in Fall 2001). SSUSI will routinely produce maps of ionospheric and upper atmospheric composition and image the aurora. In this paper we describe these products and our validation plans and the process through which we can assure our sponsors and data products users of the reliability and accuracy of these products.
Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing | 1992
Larry J. Paxton; C.-I. Meng; Glen H. Fountain; Bernard S. Ogorzalek; Edward Hugo Darlington; Stephen A. Gary; John O. Goldsten; David Y. Kusnierkiewicz; Susan C. Lee; Lloyd A. Linstrom; Jeffrey J. Maynard; Keith Peacock; David F. Persons; Brian E. Smith
We describe the Special Sensor Ultraviolet Spectrographic Imager (SSUSI). This instrument consists of a scanning imaging spectrograph (SIS) whose field-of-view is scanned from horizon to horizon and a nadir-looking photometer system (NPS). The SIS produces simultaneous multispectral images over the spectral range 1 150 to 1800A. The NPS consists of three photometers with filters designed to monitor the airglow at 4278A and 6300A and the terrestrial albedo near 6300A. SSUSI will fly on the DMSP Block 5D3 satellites S-16 thru S-19. The instruments will be calibrated at the Applied Physics Laboratorys Optical Calibration Facility.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999
John O. Goldsten; David Carl Humm; Larry J. Paxton; Bernard S. Ogorzalek; Stephen A. Gary; John Hayes; John D. Boldt
This paper describes the design and performance of the detectors and electronics developed for the Global UV Imager (GUVI) aboard the NASA TIMED spacecraft, to be launched in May 2000. GUVI employs two alternate design detectors that are compact sealed units with MgF windows, CsI photocathodes, and wedge-and-strip anodes. The focal plane is 15.6 mm X 16.5 mm with images quantized to 176 spectral by 14 spatial pixels, although access to image data over the entire 25-mm dia active area is provided. Moderate detector resolution is achieved at a relatively low gain. Science emphasis is on high throughput, good image stability, and high radiometric accuracy. Significant detector aging is anticipated over an extended mission with sustained high counting rates. Custom hybrid front-end electronics were developed to enable direct coupling to the wedge-and-strip anodes. This eliminates inter-electrode potentials and the associated image distortion and shift with counting rate. A parallel fast channel provides pulse pile-up rejection. XY position, binning, and compression algorithms are performed in software by a fast, radiation- hardened RISC processor. A full-custom ASIC counts input and output rates for each detector.
Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV | 2002
D. J. Morrison; Larry J. Paxton; David Carl Humm; Brian Charles Wolven; H. Kil; Y. Zhang; Bernard S. Ogorzalek; C.-I. Meng
The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) is currently slated for launch on the Defense Meteorological Satellite Program (DMSP) F-16 in November 2001. This instrument consists of a scanning imaging spectrograph (SIS) whose field-of-view is scanned from horizon-to-horizon and a nadir-looking photometer system (NPS). It will provide operational information about the state of the atmosphere above 100 km. The unique problems incurred by the observational requirements (e.g. that we be able to make daytime and nighttime observations) and the design trade-offs needed to meet those requirements were strong drivers on calibration requirements. Those design trade-offs and the expectation that the instrument calibration will change appreciably in-flight have led to the requirement to perform a large instrument characterization in-flight using only natural sources. We focus, in this paper, on the flight characterization of the SSUSI instrument. This includes discussions of the stellar calibration approach for radiometric calibration, measurements of internally scattered light, sensitivity to the South Atlantic Anomaly, measurements of changing pulse height distributions, and measuring changing reflectivity of a nadir viewing scan mirror. In addition, the calibration of the NPS system using natural sources is addressed.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1999
David Carl Humm; Bernard S. Ogorzalek; Michael J. Elko; D. J. Morrison; Larry J. Paxton
The Global Ultraviolet Imager of the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics mission has been calibrated at the Optical Calibration Facility of the Applied Physics Laboratory. This spectrographic imager has a 0.74 degree(s) X 11.6 degree(s) field-of-view, a 140 degree(s) X 11.6 degree(s) field-of-regard and collects data in 176 wavelength bins in the spectral range from 120 - 180 nm. The calibration of this far ultraviolet instrument requires continuously variable wavelengths and angles within a high- vacuum system from the light source to the instrument. An optical calibration facility has been developed providing a bright, uniform, wavelength-selectable, collimated light beam, which is mapped in situ to correct for intensity drifts in the lamp. The facility design and the calibration procedure are discussed.
Electro-Optical and Infrared Systems: Technology and Applications XIII | 2016
Larry J. Paxton; John E. Hicks; Matthew P. Grey; Charles Parker; Ramsay S. Hourani; Kathryn Marcotte; Uno P. Carlsson; Samuel Kerem; Steven Neil Osterman; Bryan J. Maas; Bernard S. Ogorzalek
SSUSI-Lite is an update of an existing sensor, SSUSI. The current generation of Defense Meteorological Satellite Program (DMSP) satellites (Block 5D3) includes a hyperspectral, cross-tracking imaging spectrograph known as the Special Sensor Ultraviolet Spectrographic Imager (SSUSI). SSUSI has been part of the DMSP program since 1990. SSUSI is designed to provide space weather information such as: auroral imagery, ionospheric electron density profiles, and neutral density composition changes. The sensors that are flying today (see http://ssusi.jhuapl.edu) were designed in 1990 - 1992. There have been some significant improvements in flight hardware since then. The SSUSI-Lite instrument is more capable than SSUSI yet consumes ½ the power and is ½ the mass. The total package count (and as a consequence, integration cost and difficulty) was reduced from 7 to 2. The scan mechanism was redesigned and tested and is a factor of 10 better. SSUSI-Lite can be flown as a hosted payload or a rideshare – it only needs about 10 watts and weighs under 10 kg. We will show results from tests of an interesting intensified position sensitive anode pulse counting detector system. We use this approach because the SSUSI sensor operates in the far ultraviolet – from about 110 to 180 nm or 0.11 to 0.18 microns.
Proceedings of SPIE | 2015
Bernard S. Ogorzalek; Steven Neil Osterman; Uno P. Carlsson; Matthew P. Grey; John C. Hicks; Ramsey Hourani; Samuel Kerem; Kathryn Marcotte; Charles Parker; Larry J. Paxton
SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.
Optical spectroscopic techniques and instrumentation for atmospheric and space research. Conference | 1999
Larry J. Paxton; Andrew B. Christensen; David Carl Humm; Bernard S. Ogorzalek; C. T. Pardoe; D. J. Morrison; Michele B. Weiss; W. R. Crain; Patricia H. Lew; John O. Goldsten; Stephen A. Gary; David F. Persons; Mark J. Harold; E. Brian Alvarez; Carl J. Ercol; Douglas J. Strickland; C.-I. Meng
Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2004
Larry J. Paxton; Andrew B. Christensen; D. J. Morrison; Brian Charles Wolven; H. Kil; Y. Zhang; Bernard S. Ogorzalek; David Carl Humm; John O. Goldsten; Robert DeMajistre; C.-I. Meng