Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardino Virdis is active.

Publication


Featured researches published by Bernardino Virdis.


Water Research | 2008

Microbial fuel cells for simultaneous carbon and nitrogen removal

Bernardino Virdis; Korneel Rabaey; Zhiguo Yuan; Jurg Keller

The recent demonstration of cathodic nitrate reduction in a microbial fuel cell (MFC) creates opportunities for a new technology for nitrogen removal from wastewater. A novel process configuration that achieves both carbon and nitrogen removal using MFC is designed and demonstrated. The process involves feeding the ammonium-containing effluent from the carbon-utilising anode to an external biofilm-based aerobic reactor for nitrification, and then feeding the nitrified liquor to the MFC cathode for nitrate reduction. Removal rates up to 2 kg COD m(-3)NCC d(-1) (chemical oxygen demand: COD, net cathodic compartment: NCC) and 0.41 kg NO(3)(-)-Nm(-3)NCC d(-1) were continuously achieved in the anodic and cathodic compartment, respectively, while the MFC was producing a maximum power output of 34.6+/-1.1 Wm(-3)NCC and a maximum current of 133.3+/-1.0 Am(-3)NCC. In comparison to conventional activated sludge systems, this MFC-based process achieves nitrogen removal with a decreased carbon requirement. A COD/N ratio of approximately 4.5 g COD g(-1) N was achieved, compared to the conventionally required ratio of above 7. We have demonstrated that also nitrite can be used as cathodic electron acceptor. Hence, upon creating a loop concept based on nitrite, a further reduction of the COD/N ratio would be possible. The process is also more energy effective not only due to the energy production coupled with denitrification, but also because of the reduced aeration costs due to minimised aerobic consumption of organic carbon.


Water Research | 2010

Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells

Bernardino Virdis; Korneel Rabaey; René A. Rozendal; Zhiguo Yuan; Jurg Keller

Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0+/-0.5 mg N L(-1) and 2.13+/-0.05 mg N L(-1), respectively, resulting in a nitrogen removal efficiency of 94.1+/-0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.


The ISME Journal | 2010

Bacterial community structure corresponds to performance during cathodic nitrate reduction.

Kelly C. Wrighton; Bernardino Virdis; Peter Clauwaert; S Read; Rebecca A. Daly; Nico Boon; Yvette M. Piceno; Gary L. Andersen; John D. Coates; Korneel Rabaey

Microbial fuel cells (MFCs) have applications other than electricity production, including the capacity to power desirable reactions in the cathode chamber. However, current knowledge of the microbial ecology and physiology of biocathodes is minimal, and as a result more research dedicated to understanding the microbial communities active in cathode biofilms is required. Here we characterize the microbiology of denitrifying bacterial communities stimulated by reducing equivalents generated from the anodic oxidation of acetate. We analyzed biofilms isolated from two types of cathodic denitrification systems: (1) a loop format where the effluent from the carbon oxidation step in the anode is subjected to a nitrifying reactor which is fed to the cathode chamber and (2) an alternative non-loop format where anodic and cathodic feed streams are separated. The results of our study indicate the superior performance of the loop reactor in terms of enhanced current production and nitrate removal rates. We hypothesized that phylogenetic or structural features of the microbial communities could explain the increased performance of the loop reactor. We used PhyloChip with 16S rRNA (cDNA) and fluorescent in situ hybridization to characterize the active bacterial communities. Our study results reveal a greater richness, as well as an increased phylogenetic diversity, active in denitrifying biofilms than was previously identified in cathodic systems. Specifically, we identified Proteobacteria, Firmicutes and Chloroflexi members that were dominant in denitrifying cathodes. In addition, our study results indicate that it is the structural component, in terms of bacterial richness and evenness, rather than the phylogenetic affiliation of dominant bacteria, that best corresponds to cathode performance.


Current Opinion in Biotechnology | 2014

The role of anaerobic digestion in the emerging energy economy

Damien J. Batstone; Bernardino Virdis

Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas.


Bioresource Technology | 2011

Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode.

Bernardino Virdis; S Read; Korneel Rabaey; René A. Rozendal; Zhiguo Yuan; Jurg Keller

The aeration of the cathode compartment of bioelectrochemical systems (BESs) was recently shown to promote simultaneous nitrification and denitrification (SND). This study investigates the cathodic metabolism under different operating conditions as well as the structural organization of the cathodic biofilm during SND. Results show that a maximal nitrogen removal efficiency of 86.9 ± 0.5%, and a removal rate of 3.39 ± 0.08 mg NL(-1)h(-1) could be achieved at a dissolved oxygen (DO) level of 5.73 ± 0.03 mg L(-1) in the catholyte. The DO levels used in this study are higher than the thresholds previously reported as detrimental for denitrification. Analysis of the cathodic half-cell potential during batch tests suggested the existence of an oxygen gradient within the biofilm while performing SND. FISH analysis corroborated this finding revealing that the structure of the biofilm included an outer layer occupied by putative nitrifying organisms, and an inner layer where putative denitrifying organisms were most dominant. To our best knowledge this is the first time that nitrifying and denitrifying microorganisms are simultaneously observed in a cathodic biofilm.


Chemsuschem | 2015

Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production

Falk Harnisch; Luis F. M. Rosa; Frauke Kracke; Bernardino Virdis; Jens O. Krömer

The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained.


Environmental Science & Technology | 2011

Biocathodic Nitrous Oxide Removal in Bioelectrochemical Systems

Joachim Desloover; Sebasti a Puig; Bernardino Virdis; Peter Clauwaert; Pascal Boeckx; Willy Verstraete; Nico Boon

Anthropogenic nitrous oxide (N(2)O) emissions represent up to 40% of the global N(2)O emission and are constantly increasing. Mitigation of these emissions is warranted since N(2)O is a strong greenhouse gas and important ozone-depleting compound. Until now, only physicochemical technologies have been applied to mitigate point sources of N(2)O, and no biological treatment technology has been developed so far. In this study, a bioelectrochemical system (BES) with an autotrophic denitrifying biocathode was considered for the removal of N(2)O. The high N(2)O removal rates obtained ranged between 0.76 and 1.83 kg N m(-3) net cathodic compartment (NCC) d(-1) and were proportional to the current production, resulting in cathodic coulombic efficiencies near 100%. Furthermore, our experiments suggested the active involvement of microorganisms as the catalyst for the reduction of N(2)O to N(2), and the optimal cathode potential ranged from -200 to 0 mV vs standard hydrogen electrode (SHE) in order to obtain high conversion rates. Successful operation of the system for more than 115 days with N(2)O as the sole cathodic electron acceptor strongly indicated that N(2)O respiration yielded enough energy to maintain the biological process. To our knowledge, this study provides for the first time proof of concept of biocathodic N(2)O removal at long-term without the need for high temperatures and expensive catalysts.


Biotechnology and Bioengineering | 2014

Regulation mechanisms in mixed and pure culture microbial fermentation

Robert D. Hoelzle; Bernardino Virdis; Damien J. Batstone

Mixed‐culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed‐culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed‐culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed‐culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end‐products and may form the basis for future mechanistic models. Biotechnol. Bioeng. 2014;111: 2139–2154.


Marine and Freshwater Research | 2010

Effect of geomorphological setting and rainfall on nutrient exchange in mangroves during tidal inundation

Maria Fernanda Adame; Bernardino Virdis; Catherine E. Lovelock

One of the key ecosystem services provided by mangroves is their role in mediating nutrient exchange, thereby protecting coastal ecosystems from negative impacts of nutrient enrichment. In this study, we tested whether geomorphological setting and level of rainfall affect the intensity and direction of nutrient exchange. Our hypotheses were that tidal mangroves retain more nutrients than riverine mangroves and that nutrient retention is stronger during periods of high rainfall. Concentrations of soluble reactive phosphorus (SRP), nitrogen oxides (NOx–-N) and ammonium (NH4+) were measured from water entering and leaving the mangroves during tidal cycles. Our results show that nutrient concentrations were higher in the flood tide compared with the ebb tide by up to 28% for NOx–-N, 51% for SRP and 83% for NH4+, suggesting retention by the mangroves. Geomorphological setting determined nutrient exchange to some extent, with some riverine sites receiving more nutrients than tidal sites and thus, being more important in nutrient retention. Rainfall was important in determining nutrient exchange as it enhanced SRP and NH4+ retention. These results show that mangroves can improve water quality of creeks and rivers, and underscore the need for conservation of mangroves over a range of geomorphological settings.


PLOS ONE | 2014

Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance Raman microscopy study

Bernardino Virdis; Diego Millo; Bogdan C. Donose; Damien J. Batstone

Confocal Resonance Raman Microscopy (CRRM) was used to probe variations of redox state of c-type cytochromes embedded in living mixed-culture electroactive biofilms exposed to different electrode polarizations, under potentiostatic and potentiodynamic conditions. In the absence of the metabolic substrate acetate, the redox state of cytochromes followed the application of reducing and oxidizing electrode potentials. Real-time monitoring of the redox state of cytochromes during cyclic voltammetry (CV) in a potential window where cytochromes reduction occurs, evidenced a measurable time delay between the oxidation of redox cofactors probed by CV at the electrode interface, and oxidation of distal cytochromes probed by CRRM. This delay was used to tentatively estimate the diffusivity of electrons through the biofilm. In the presence of acetate, the resonance Raman spectra of young (10 days, j = 208±49 µA cm−2) and mature (57 days, j = 267±73 µA cm−2) biofilms show that cytochromes remained oxidized homogeneously even at layers as far as 70 µm from the electrode, implying the existence of slow metabolic kinetics that do not result in the formation of a redox gradient inside the biofilm during anode respiration. However, old biofilms (80 days, j = 190±37 µA cm−2) with thickness above 100 µm were characterized by reduced catalytic activity compared to the previous developing stages. The cytochromes in these biofilm were mainly in the reduced redox state, showing that only aged mixed-culture biofilms accumulate electrons during anode respiration. These results differ substantially from recent observations in pure Geobacter sulfurreducens electroactive biofilms, in which accumulation of reduced cytochromes is already observed in thinner biofilms, thus suggesting different bottlenecks in current production for mixed-culture and G. sulfurreducens biofilms.

Collaboration


Dive into the Bernardino Virdis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jurg Keller

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiguo Yuan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Falk Harnisch

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge