Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiguo Yuan is active.

Publication


Featured researches published by Zhiguo Yuan.


Stem Cells International | 2015

Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

Weimin Guo; Shuyun Liu; Yun Zhu; Changlong Yu; Shibi Lu; Mei Yuan; Yue Gao; Jingxiang Huang; Zhiguo Yuan; Jiang Peng; Aiyuan Wang; Yu Wang; Jifeng Chen; Li Zhang; Xiang Sui; Wenjing Xu; Quanyi Guo

The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA). The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods.


Stem Cells International | 2017

Advances and Prospects in Stem Cells for Cartilage Regeneration

Mingjie Wang; Zhiguo Yuan; Ning Ma; Chunxiang Hao; Weimin Guo; Gengyi Zou; Yu Zhang; Mingxue Chen; Shuang Gao; Jiang Peng; Aiyuan Wang; Yu Wang; Xiang Sui; Wenjing Xu; Shibi Lu; Shuyun Liu; Quanyi Guo

The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.


BioMed Research International | 2016

Extracellular Vesicles and Autophagy in Osteoarthritis

Tianyang Gao; Weimin Guo; Mingxue Chen; Jingxiang Huang; Zhiguo Yuan; Yu Zhang; Mingjie Wang; Penghao Li; Jiang Peng; Aiyuan Wang; Yu Wang; Xiang Sui; Li Zhang; Wenjing Xu; Shibi Lu; Xifeng Zhang; Shuyun Liu; Quanyi Guo

Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.


Journal of Materials Chemistry B | 2017

Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering

Shuang Gao; Weimin Guo; Mingxue Chen; Zhiguo Yuan; Mingjie Wang; Yu Zhang; Shuyun Liu; Tingfei Xi; Quanyi Guo

Many kinds of scaffolds have been produced in meniscus tissue engineering, but few have matched the mechanical properties of native meniscus, making it impossible for them to sustain large stress at initial implantation. In this study, we used a differential centrifugation method to obtain decellularized meniscus extracellular matrix (DMECM) and combined the DMECM with polycaprolactone (PCL) via electrospinning to fabricate random and aligned microfibers. The FTIR results and biochemical assays demonstrated the successful mixing of these two elements, and the addition of DMECM improved the hydrophilicity of the microfibers. The blending of DMECM also enhanced the tensile modulus of the microfibers, and aligned fibers had tensile moduli ranging from 132.27 to 331.40 MPa, which match that of human meniscus. In addition, we defined yield stress as the lose-efficacy point. The results showed that DMECM/PCL fibers had higher yield stresses than the pure PCL fibers, and the aligned fibers had higher yield stress values than the randomly oriented fibers. Nanoindentation results showed that adding DMECM had no significant impact on modulus and hardness with the exception of fibers containing 80% DMECM, which exhibited an obvious increase in modulus. In vitro assay demonstrated that the DMECM/PCL fibers had no hemolysis or cytotoxicity. Meniscus cells could attach and proliferate on the fibers, and the fiber orientation had a direct influence on cell arrangement. RT-PCR results showed that meniscus cells had higher gene expressions of aggrecan, collagen I, collagen II and Sox 9 when seeded on fibers with higher DMECM contents.


Materials Science and Engineering: C | 2017

Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

Shuang Gao; Zhiguo Yuan; Weimin Guo; Mingxue Chen; Shuyun Liu; Tingfei Xi; Quanyi Guo

The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96h, scaffolds crosslinked by GTA and EDAC could maintain their mass >70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49kPa in compression modulus and 12.81kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44kPa respectively. The same value of scaffolds crosslinked by 1.2mol/l EDAC were 1.49 and 532.50kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2mol/l EDAC was a preferable crosslinking condition.


Frontiers of Materials Science | 2016

Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications

Shuang Gao; Zhiguo Yuan; Tingfei Xi; Xiaojuan Wei; Quanyi Guo

Menisci are fundamental fibrocartilaginous organs in knee joints. The injury in meniscus can impair normal knee function and predisposes patients to osteoarthritis. This study prepared decellularized meniscus scaffolds using a 1% (w/w) sodium dodecyl sulfate solution and sufficient rinsing steps. Complete cell removal was verified by hematoxylin and eosin staining and DNA content assay. Decellularized menisci had accordant tension properties to intact ones, but with declined compression properties. This occurred because the collagen fiber was not damaged but glycosaminoglycans was significantly lost during the decellularization process, which was confirmed by biochemical assay and histology staining. In vitro cytotoxicity assay demonstrated that decellularized meniscus scaffolds have no toxicity on L929 murine fibroblasts and porcine chondrocytes. Further experiment showed that porcine chondrocytes could adhere and proliferate on the scaffold surface, and some cells even could infiltrate into the scaffold. All results showed the potential of this decellularized meniscus to be the scaffolds in tissue engineering.


Stem Cells International | 2018

Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model

Weimin Guo; Xifu Zheng; Weiguo Zhang; Mingxue Chen; Zhenyong Wang; Chunxiang Hao; Jingxiang Huang; Zhiguo Yuan; Yu Zhang; Mingjie Wang; Jiang Peng; Aiyuan Wang; Yu Wang; Xiang Sui; Wenjing Xu; Shuyun Liu; Shibi Lu; Quanyi Guo

Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.


Current Stem Cell Research & Therapy | 2017

Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering

Jinxin Zhang; Chunyan Du; Weimin Guo; Pan Li; Shuyun Liu; Zhiguo Yuan; Jianhua Yang; Xun Sun; Heyong Yin; Quanyi Guo; Chenfu Zhou

BACKGROUND Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. OBJECTIVE Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. CONCLUSION Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications.


Stem Cells International | 2018

Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells

Weimin Guo; Wenjing Xu; Zhenyong Wang; Mingxue Chen; Chunxiang Hao; Xifu Zheng; Jingxiang Huang; Xiang Sui; Zhiguo Yuan; Yu Zhang; Mingjie Wang; Xu Li; Zehao Wang; Jiang Peng; Aiyuan Wang; Yu Wang; Shuyun Liu; Shibi Lu; Quanyi Guo

The meniscus plays a vital role in protecting the articular cartilage of the knee joint. The inner two-thirds of the meniscus are avascular, and injuries to this region often fail to heal without intervention. The use of tissue engineering and regenerative medicine techniques may offer novel and effective approaches to repairing meniscal injuries. Meniscal tissue engineering and regenerative medicine typically use one of two techniques, cell-based or cell-free. While numerous cell-based strategies have been applied to repair and regenerate meniscal defects, these techniques possess certain limitations including cellular contamination and an increased risk of disease transmission. Cell-free strategies attempt to repair and regenerate the injured tissues by recruiting endogenous stem/progenitor cells. Cell-free strategies avoid several of the disadvantages of cell-based techniques and, therefore, may have a wider clinical application. This review first compares cell-based to cell-free techniques. Next, it summarizes potential sources for endogenous stem/progenitor cells. Finally, it discusses important recruitment factors for meniscal repair and regeneration. In conclusion, cell-free techniques, which focus on the recruitment of endogenous stem and progenitor cells, are growing in efficacy and may play a critical role in the future of meniscal repair and regeneration.


BioMed Research International | 2018

Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

Mingxue Chen; Weimin Guo; Shunag Gao; Chunxiang Hao; Shi Shen; Zengzeng Zhang; Zhenyong Wang; Zehao Wang; Xu Li; Xiaoguang Jing; Xueliang Zhang; Zhiguo Yuan; Mingjie Wang; Yu Zhang; Jiang Peng; Aiyuan Wang; Yu Wang; Xiang Sui; Shuyun Liu; Quanyi Guo

Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation.

Collaboration


Dive into the Zhiguo Yuan's collaboration.

Top Co-Authors

Avatar

Quanyi Guo

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Shuyun Liu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Weimin Guo

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiang Peng

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Mingxue Chen

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Aiyuan Wang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Mingjie Wang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Shibi Lu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiang Sui

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge