Bernardo Acácio Santini Pereira
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernardo Acácio Santini Pereira.
Veterinary Parasitology | 2008
Bernardo Acácio Santini Pereira; Carlos Roberto Alves
The murine models of Leishmania infection are well-studied and suitable models for studying this disease, which, despite its incidence of nearly 2 million new cases worldwide per year and its prevalence of 12 million cases, has been a somewhat neglected disease. Data obtained using such models are important for a better understanding of the disease in humans due to similarities in physiology and the advantage provided by the uniform infection profile within each mouse strain. In this review, we focus on studies of experimental murine infection with Leishmania (Leishmania) amazonensis, a species that has been associated with infections exhibiting various clinical features in humans. Mainly, we point out and discuss reports on: the effects of variations of the inoculum (such as strain, site, and size) in the establishment and development of the infection; characteristics of the infection in distinct mouse strains; and, the effects and subversions of the infection on components of the host innate and adaptive immune responses. The results obtained in these studies show that L. (L.) amazonensis infection in mice presents some unique features and immunoregulatory mechanisms, making it an interesting model for obtaining further knowledge of potential drugs targets and immunotherapy in Leishmania infection.
Parasites & Vectors | 2012
Mariana Silva-Almeida; Bernardo Acácio Santini Pereira; Michelle Lopes Ribeiro-Guimarães; Carlos Roberto Alves
Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients’ biological samples and from assays with animal models confirm the involvement of an array of the parasite’s components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.
Parasites & Vectors | 2012
Luzia Monteiro de Castro Côrtes; Mirian Claudia de Souza Pereira; Franklin Souza da Silva; Bernardo Acácio Santini Pereira; Francisco de Oliveira Junior; Renata Oliveira de Araújo Soares; Reginaldo Peçanha Brazil; Leny Toma; Carolina Meloni Vicente; Helena B. Nader; Maria de Fátima Madeira; Felio Bello; Carlos Roberto Alves
BackgroundLeishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event.MethodsFlagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis.ResultsThe success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V.) braziliensis promastigote surfaces.ConclusionsThe data presented here point to evidences that HBPs present on the surface of L. (V.) braziliensis promastigotes participate in adhesion of these parasites to Lulo cells through HS participation.
Parasites & Vectors | 2014
Mariana Silva-Almeida; Franklin Souza-Silva; Bernardo Acácio Santini Pereira; Michelle Lopes Ribeiro-Guimarães; Carlos Roberto Alves
BackgroundThe genus Leishmania includes protozoan parasites that are able to infect an array of phlebotomine and vertebrate species. Proteases are related to the capacity of these parasites to infect and survive in their hosts and are therefore classified as virulence factors.FindingsBy analyzing protease genes annotated in the genomes of four Leishmania spp [Leishmania (Leishmania) infantum, L. (L.) major, L. (L.) mexicana and L. (Viannia) braziliensis], these genes were found on every chromosome of these protozoa. Four protease classes were studied: metallo-, serine, cysteine and aspartic proteases. Metalloprotease genes predominate in the L. (V.) braziliensis genome, while in the other three species studied, cysteine protease genes prevail. Notably, cysteine and serine protease genes were found to be very abundant, as they were found on all chromosomes of the four studied species. In contrast, only three aspartic protease genes could be detected in these four species. Regarding gene conservation, a higher number of conserved alleles was observed for cysteine proteases (42 alleles), followed by metalloproteases (35 alleles) and serine proteases (15 alleles).ConclusionsThe present study highlights substantial differences in the organization of protease genes among L. (L.) infantum, L. (L.) major, L. (L.) mexicana and L. (V.) braziliensis. We observed significant distinctions in many protease features, such as occurrence, quantity and conservation. These data indicate a great diversity of protease genes among Leishmania species, an aspect that may be related to their adaptations to the peculiarities of each microenvironment they inhabit, such as the gut of phlebotomines and the immune cells of vertebrate hosts.
Current Drug Targets | 2014
Bernardo Acácio Santini Pereira; Franklin Souza-Silva; Mariana Silva-Almeida; Raquel Santos-de-Souza; Luiz Filipe Gonçalves de Oliveira; Michelle Lopes Ribeiro-Guimarães; Carlos Roberto Alves
This review presents and discusses the current status and perspectives of leishmaniasis treatment, with a special focus on the use of proteinase inhibitors. The history of treatment development, the first- and second-choice modern drugs and the advantages and disadvantages of using proteinases inhibitors as leishmanicidal treatments are presented and discussed. The reports gathered herein confirm the potential usefulness of proteinases inhibitors as an alternative or complement to the current leishmaniasis treatments. They also support the hypothesis that a combined treatment with multiple proteinase inhibitors may be efficient against Leishmania infections in vertebrate hosts.
Parasitology | 2012
Luzia Monteiro de Castro Côrtes; Mirian Claudia de Souza Pereira; Francisco Odêncio Rodrigues de Oliveira; Suzana Corte-Real; Franklin Souza da Silva; Bernardo Acácio Santini Pereira; Maria de Fátima Madeira; Marcia Terezinha Baroni de Moraes; Reginaldo Peçanha Brazil; Carlos Roberto Alves
Leishmaniasis is a vector-borne disease and an important public health issue. Glycosaminoglycan ligands in Leishmania parasites are potential targets for new strategies to control this disease. We report the subcellular distribution of heparin-binding proteins (HBPs) in Leishmania (Viannia) braziliensis and specific biochemical characteristics of L. (V.) braziliensis HBPs. Promastigotes were fractionated, and flagella and membrane samples were applied to HiTrap Heparin affinity chromatography columns. Heparin-bound fractions from flagella and membrane samples were designated HBP Ff and HBP Mf, respectively. Fraction HBP Ff presented a higher concentration of HBPs relative to HBP Mf, and SDS-PAGE analyses showed 2 major protein bands in both fractions (65 and 55 kDa). The 65 kDa band showed gelatinolytic activity and was sensitive to inhibition by 1,10-phenanthroline. The localization of HBPs on the promastigote surfaces was confirmed using surface plasmon resonance (SPR) biosensor analysis by binding the parasites to a heparin-coated sensor chip; that was inhibited in a dose-dependent manner by pre-incubating the parasites with variable concentrations of heparin, thus indicating distinct heparin-binding capacities for the two fractions. In conclusion, protein fractions isolated from either the flagella or membranes of L. (V.) braziliensis promastigotes have characteristics of metallo-proteinases and are able to bind to glycosaminoglycans.
Experimental Parasitology | 2014
Franklin Souza-Silva; Samara Braga do Nascimento; Saulo C. Bourguignon; Bernardo Acácio Santini Pereira; Paula F. Carneiro; Wellington Seguis da Silva; Carlos Roberto Alves; Rosa Teixeira de Pinho
In this work, we analyze the leishmanicidal effects of epoxy-α-lapachone on Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis. Promasigotes and amastigotes (inhabiting human macrophages) from both species were assayed to verify the compounds activity over the distinct morphological stages. The incubation with epoxy-α-lapachone led to a significant decrease in the numbers of promastigotes from both species in the cultures, in a dose-and time-dependent fashion. The survival of amastigotes inhabiting human macrophages was also drastically affected by the compound, as shown by the variations in the endocytic index. Our results indicate that the epoxy-α-lapachone has an antiparasitic effect over Leishmania in both morphological stages and may potentially affect a range of species in two distinct subgenera of this parasite.
Antimicrobial Agents and Chemotherapy | 2015
Franklin Souza-Silva; Saulo C. Bourguignon; Bernardo Acácio Santini Pereira; Luzia Monteiro de Castro Côrtes; Luiz Filipe Gonçalves de Oliveira; Andrea Henriques-Pons; Léa Cysne Finkelstein; Vitor F. Ferreira; Paula F. Carneiro; Rosa Teixeira de Pinho; Ernesto R. Caffarena; Carlos Roberto Alves
ABSTRACT Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm2), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm2) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm2). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compounds effects on the parasite.
Journal of Molecular Recognition | 2014
Franklin Souza-Silva; Bernardo Acácio Santini Pereira; Léa Cysne Finkelstein; Valtencir Zucolotto; Ernesto R. Caffarena; Carlos Roberto Alves
Peptides from the COOH‐terminal extension of cysteine proteinase B from Leishmania (Leishmania) amazonensis (cyspep) can modulate immune responses in vertebrate hosts. With this hypothesis as base, we used the online analysis tool SYFPEITHI to predict seven epitopes from this region with potential to bind H2 proteins. We performed proliferation tests and quantified reactive T lymphocytes applying a cytometry analysis, using samples from draining lymph node of lesions from L. (L.) amazonensis‐infected mice. To define reactivity of T cells, we used complexes of DimerX (H2 Db:Ig and H2 Ld:Ig) and the putative epitopes. Additionally, we applied surface plasmon resonance to verify real time interactions between the putative epitopes and DimerX proteins. Five peptides induced blastogenesis in BALB/c cells, while only two presented the same property in C57BL/6 mouse cells. In addition, our data indicate the existence of CD8+ T lymphocyte populations able to recognize each tested peptide in both murine strains. We observed an overlapping of results between the peptides that induced lymphocyte proliferation and those capable of binding to the DimerX in the surface plasmon resonance assays thus indicating that using these recombinant proteins in biosensing analyses is a promising tool to study real time molecular interactions in the context of major histocompatibility complex epitopes. The data gathered in this study reinforce the hypothesis that cyspep‐derived peptides are important factors in the murine host infection by L. (L.) amazonensis. Copyright
Journal of Molecular Modeling | 2014
Carlos Roberto Alves; Bernardo Acácio Santini Pereira; Mariana Silva-Almeida; Franklin Souza da Silva
The use of proteinases as targets to develop novel chemotherapies against Leishmania spp. infections is a very promising strategy. Based on a previous study by Goyal et al. [J Mol Model (2014) 20:2099], we discuss herein the idea that only a combined treatment with distinct proteinase inhibitors would be an effective antileishmanial therapy.