Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Teixeira de Pinho is active.

Publication


Featured researches published by Rosa Teixeira de Pinho.


Parasitology Research | 2008

Leishmaniasis treatment—a challenge that remains: a review

Dilvani O. Santos; Carlos E. R. Coutinho; Maria de Fátima Madeira; Carolina G. Bottino; Rodrigo Tonioni Vieira; Samara Braga do Nascimento; Alice M. R. Bernardino; Saulo C. Bourguignon; Suzana Corte-Real; Rosa Teixeira de Pinho; Carlos Rangel Rodrigues; Helena C. Castro

Leishmaniasis is a disease caused by flagellate protozoan Leishmania spp. and represents an emergent illness with high morbidity and mortality in the tropics and subtropics. Since the discovery of the first drugs for Leishmaniasis treatment (i.e., pentavalent antimonials), until the current days, the search for substances with antileishmanial activity, without toxic effects, and able to overcome the emergence of drug resistant strains still remains as the current goal. This article reports the development of new chemotherapies through the rational design of new drugs, the use of products derived from microorganisms and plants, and treatments related to immunity as new alternatives for the chemotherapy of leishmaniasis.


Experimental Parasitology | 2009

Trypanosoma cruzi: isolation and characterization of aspartyl proteases.

Rosa Teixeira de Pinho; Leila M. Beltramini; Carlos Roberto Alves; Salvatore Giovanni De-Simone

Two aspartyl proteases activities were identified and isolated from Trypanosoma cruzi epimastigotes: cruzipsin-I (CZP-I) and cruzipsin-II (CZP-II). One was isolated from a soluble fraction (CZP-II) and the other was solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CZP-I). The molecular mass of both proteases was estimated to be 120 kDa by HPLC gel filtration and the activity of the enzymes was detected in a doublet of bands (56 and 48 kDa) by substrate-sodium dodecyl sulphate-polyacrylamide-gelatin gel electrophoresis. Substrate specificity studies indicated that the enzymes consistently hydrolyze the cathepsin D substrate Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu-O4MP but failed to hydrolyze serine and other protease substrates. Both proteases activities were strongly inhibited by the classic inhibitor pepstatin-A (> or =68%) and the aspartic active site labeling agent, 1,2-epoxy-3-(phenyl-nitrophenoxy) propane (> or =80%). These findings show that both proteases are novel T. cruzi acidic proteases. The physiological function of these enzymes in T. cruzi has under investigation.


Experimental Parasitology | 2011

Trypanosoma cruzi: Insights into naphthoquinone effects on growth and proteinase activity

Saulo C. Bourguignon; Danielle F.B. Cavalcanti; Alessandra Mendonça Teles de Souza; Helena C. Castro; Carlos Rangel Rodrigues; Magaly Girão Albuquerque; Dilvani O. Santos; Gabriel Gomes da Silva; Fernando de C. da Silva; Vitor F. Ferreira; Rosa Teixeira de Pinho; Carlos Roberto Alves

In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.


Experimental Parasitology | 2009

Trypanosoma cruzi: in vitro activity of Epoxy-α-Lap, a derivative of α-lapachone, on trypomastigote and amastigote forms

Saulo C. Bourguignon; Helena C. Castro; D.O. Santos; Carlos Roberto Alves; Vitor F. Ferreira; I.L. Gama; Fernando de C. da Silva; W.S. Seguins; Rosa Teixeira de Pinho

Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-alpha-Lap, an oxyran derivative of alpha-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-alpha-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-alpha-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-alpha-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-alpha-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.


European Journal of Medicinal Chemistry | 2014

Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines

Mariana F. C. Cardoso; Patrícia C. Rodrigues; Maria Eduarda I.M. Oliveira; Ivson Lelis Gama; Illana M.C.B. da Silva; Isabela O. Santos; David R. da Rocha; Rosa Teixeira de Pinho; Vitor F. Ferreira; Maria Cecília B. V. de Souza; Fernando de C. da Silva; Floriano Paes Silva-Jr

Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Naphthoquinones (NQ) are considered privileged structures in medicinal chemistry due to their plethora of biological activities, including antimicrobial and anticancer effects. Nitrogen-containing heterocycles such as 1,2,3-1H-triazoles have been identified as general scaffolds for generating glycosidase inhibitors. In the present study, the NQ and 1,2,3-1H-triazole cores have been combined to chemically synthesize 18 new 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles (1,2-FNQT). Their cytotoxicities were evaluated against four different leukemia cell lines, including MOLT-4 and CEM (lymphoid cell lines) and K562 and KG1 (myeloid cell lines), as well as normal human peripheral blood mononucleated cells (PBMCs). The new 1,2-FNQT series showed high cytotoxic potential against all leukemia cell lines tested, and some compounds (12o and 12p) showed even better results than the classical therapeutic compounds such as doxorubicin or cisplatin. Others compounds, such as 12b, are promising because of their high selectivity against lymphoblastic leukemia and their low activity against normal hematopoietic cells. The cells of lymphoid origin (MOLT and CEM) were generally more sensitive than the myeloid cell lines to this series of compounds, and most of the compounds that showed the highest cytotoxicity were similarly active against both cell lines.


Fems Immunology and Medical Microbiology | 2015

Immunity and immune modulation in Trypanosoma cruzi infection.

Fabíola Cardillo; Rosa Teixeira de Pinho; Paulo R. Z. Antas; José Mengel

Chagas disease is caused by the protozoan Trypanosoma cruzi. The parasite reaches the secondary lymphoid organs, the heart, skeletal muscles, neurons in the intestine and esophagus among other tissues. The disease is characterized by mega syndromes, which may affect the esophagus, the colon and the heart, in about 30% of infected people. The clinical manifestations associated with T. cruzi infection during the chronic phase of the disease are dependent on complex interactions between the parasite and the host tissues, particularly the lymphoid system that may either result in a balanced relationship with no disease or in an unbalanced relationship that follows an inflammatory response to parasite antigens and associated tissues in some of the host organs and/or by an autoimmune response to host antigens. This review discusses the findings that support the notion of an integrated immune response, considering the innate and adaptive arms of the immune system in the control of parasite numbers and also the mechanisms proposed to regulate the immune response in order to tolerate the remaining parasite load, during the chronic phase of infection. This knowledge is fundamental to the understanding of the disease progression and is essential for the development of novel therapies and vaccine strategies.


Experimental Parasitology | 2014

Evidences for leishmanicidal activity of the naphthoquinone derivative epoxy-α-lapachone

Franklin Souza-Silva; Samara Braga do Nascimento; Saulo C. Bourguignon; Bernardo Acácio Santini Pereira; Paula F. Carneiro; Wellington Seguis da Silva; Carlos Roberto Alves; Rosa Teixeira de Pinho

In this work, we analyze the leishmanicidal effects of epoxy-α-lapachone on Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis. Promasigotes and amastigotes (inhabiting human macrophages) from both species were assayed to verify the compounds activity over the distinct morphological stages. The incubation with epoxy-α-lapachone led to a significant decrease in the numbers of promastigotes from both species in the cultures, in a dose-and time-dependent fashion. The survival of amastigotes inhabiting human macrophages was also drastically affected by the compound, as shown by the variations in the endocytic index. Our results indicate that the epoxy-α-lapachone has an antiparasitic effect over Leishmania in both morphological stages and may potentially affect a range of species in two distinct subgenera of this parasite.


Antimicrobial Agents and Chemotherapy | 2015

Epoxy-α-lapachone has in vitro and in vivo anti-Leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite.

Franklin Souza-Silva; Saulo C. Bourguignon; Bernardo Acácio Santini Pereira; Luzia Monteiro de Castro Côrtes; Luiz Filipe Gonçalves de Oliveira; Andrea Henriques-Pons; Léa Cysne Finkelstein; Vitor F. Ferreira; Paula F. Carneiro; Rosa Teixeira de Pinho; Ernesto R. Caffarena; Carlos Roberto Alves

ABSTRACT Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm2), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm2) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm2). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compounds effects on the parasite.


Memorias Do Instituto Oswaldo Cruz | 2014

Oral bacillus Calmette-Guérin vaccine against tuberculosis: why not?

Renata Monteiro-Maia; Rosa Teixeira de Pinho

The bacillus Calmette-Guérin (BCG) vaccine is the only licensed vaccine for human use against tuberculosis (TB). Although controversy exists about its efficacy, the BCG vaccine is able to protect newborns and children against disseminated forms of TB, but fails to protect adults against active forms of TB. In the last few years, interest in the mucosal delivery route for the vaccine has been increasing owing to its increased capacity to induce protective immune responses both in the mucosal and the systemic immune compartments. Here, we show the importance of this route of vaccination in newly developed vaccines, especially for vaccines against TB.


Acta Tropica | 1991

A glass wool-based method for purifying Trypanosoma cruzi trypomastigotes and identification of an epimastigote-specific glass-adherent surface peptide

Rosa Teixeira de Pinho; H.S. Dutra; Salvatore Giovanni-De-Simone; L. C. Pontes de Carvalho

Glass wool, hydrophilic cotton wool, non-electrically charged BIO-GEL P2 and common tissue paper columns were used to purify trypomastigotes from a mixed Trypanosoma cruzi population grown in axenic culture medium. With all these columns, highly purified (up to 98%) trypomastigote preparations were obtained. Trypomastigote yields from cotton wool, BIO-GEL P2 and common tissue paper columns were not as high as from glass wool columns, from which yields varied from 69 to 80%. Purification on glass wool did not affect trypomastigote infectivity or virulence. Dead trypomastigotes could not be purified on glass wool columns. A glass-adherent amphiphilic peptide of 45 kDa, present in the cell membrane, was isolated from epimastigote but not from trypomastigote preparations.

Collaboration


Dive into the Rosa Teixeira de Pinho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saulo C. Bourguignon

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar

Vitor F. Ferreira

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena C. Castro

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge