Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardo J. Foth is active.

Publication


Featured researches published by Bernardo J. Foth.


Nature Reviews Microbiology | 2004

Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast.

Stuart A. Ralph; Giel G. van Dooren; Ross F. Waller; Michael J. Crawford; Martin Fraunholz; Bernardo J. Foth; Christopher J. Tonkin; David S. Roos; Geoffrey I. McFadden

Discovery of a relict chloroplast (the apicoplast) in malarial parasites presented new opportunities for drug development. The apicoplast – although no longer photosynthetic – is essential to parasites. Combining bioinformatics approaches with experimental validation in the laboratory, we have identified more than 500 proteins predicted to function in the apicoplast. By comparison with plant chloroplasts, we have reconstructed several anabolic pathways for the parasite plastid that are fundamentally different to the analogous pathways in the human host and are potentially good targets for drug development. Products of these pathways seem to be exported from the apicoplast and might be involved in host-cell invasion.


Molecular Microbiology | 2004

The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast

Bernardo J. Foth; Luciana M. Stimmler; Emanuela Handman; Brendan S. Crabb; Anthony N. Hodder; Geoffrey I. McFadden

The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl‐CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1α, E1β, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear‐encoded proteins are targeted to the apicoplast courtesy of two‐part N‐terminal leader sequences, and the presence of such N‐terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two‐part leader sequences from the E1α and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1α and E1β PDH subunits in blood‐stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl‐CoA in the apicoplast, possibly for use in fatty acid biosynthesis.


PLOS Pathogens | 2007

Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii

Paco Pino; Bernardo J. Foth; Lai Yu Kwok; Lilach Sheiner; Rebecca Schepers; Thierry Soldati; Dominique Soldati-Favre

Toxoplasma gondii is an aerobic protozoan parasite that possesses mitochondrial antioxidant enzymes to safely dispose of oxygen radicals generated by cellular respiration and metabolism. As with most Apicomplexans, it also harbors a chloroplast-like organelle, the apicoplast, which hosts various biosynthetic pathways and requires antioxidant protection. Most apicoplast-resident proteins are encoded in the nuclear genome and are targeted to the organelle via a bipartite N-terminal targeting sequence. We show here that two antioxidant enzymes—a superoxide dismutase (TgSOD2) and a thioredoxin-dependent peroxidase (TgTPX1/2)—and an aconitase are dually targeted to both the apicoplast and the mitochondrion of T. gondii. In the case of TgSOD2, our results indicate that a single gene product is bimodally targeted due to an inconspicuous variation within the putative signal peptide of the organellar protein, which significantly alters its subcellular localization. Dual organellar targeting of proteins might occur frequently in Apicomplexans to serve important biological functions such as antioxidant protection and carbon metabolism.


Molecular Microbiology | 2004

The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases

Paul J. McMillan; Luciana M. Stimmler; Bernardo J. Foth; Geoffrey I. McFadden; Sylke Müller

The Plasmodium falciparum genome contains genes encoding three α‐ketoacid dehydrogenase multienzyme complexes (KADHs) that have central metabolic functions. The parasites possess two distinct genes encoding dihydrolipoamide dehydrogenases (LipDH), which are indispensable subunits of KADHs. This situation is reminiscent of that in plants, where two distinct LipDHs are found in mitochondria and chloroplasts, respectively, that are part of the organelle‐specific KADHs. In this study, we show by reverse transcription polymerase chain reaction (RT‐PCR) that the genes encoding subunits of all three KADHs, including both LipDHs, are transcribed during the erythrocytic development of P. falciparum. Protein expression of mitochondrial LipDH and mitochondrial branched chain α‐ketoacid dihydrolipoamide transacylase in these parasite stages was confirmed by Western blotting. The localization of the two LipDHs to the parasites apicoplast and mitochondrion, respectively, was shown by expressing the LipDH N‐terminal presequences fused to green fluorescent protein in erythrocytic stages of P. falciparum and by immunofluorescent colocalization with organelle‐specific markers. Biochemical characterization of recombinantly expressed mitochondrial LipDH revealed that the protein has kinetic and physicochemical characteristics typical of these flavo disulphide oxidoreductases. We propose that the mitochondrial LipDH is part of the mitochondrial α‐ketoglutarate dehydrogenase and branched chain α‐ketoacid dehydrogenase complexes and that the apicoplast LipDH is an integral part of the pyruvate dehydrogenase complex which occurs only in the apicoplast in P. falciparum.


Nature Genetics | 2014

Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction

Bernardo J. Foth; Isheng J. Tsai; Adam J. Reid; Allison J. Bancroft; Sarah Nichol; Alan Tracey; Nancy Holroyd; James A. Cotton; Eleanor Stanley; Magdalena Zarowiecki; Jimmy Z. Liu; Thomas Huckvale; Philip J Cooper; Richard K. Grencis; Matthew Berriman

Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage–specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.


Molecular Microbiology | 2010

Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa

Paco Pino; Eric Aeby; Bernardo J. Foth; Lilach Sheiner; Thierry Soldati; Andréas Schneider; Dominique Soldati-Favre

Apicomplexans possess three translationally active compartments: the cytosol, a single tubular mitochondrion, and a vestigial plastid organelle called apicoplast. Mitochondrion and apicoplast are of bacterial evolutionary origin and therefore depend on a bacterial‐like translation machinery. The minimal mitochondrial genome contains only three ORFs, and in Toxoplasma gondii the absence of mitochondrial tRNA genes is compensated for by the import of cytosolic eukaryotic tRNAs. Although all compartments require a complete set of charged tRNAs, the apicomplexan nuclear genomes do not hold sufficient aminoacyl‐tRNA synthetase (aaRSs) genes to be targeted individually to each compartment. This study reveals that aaRSs are either cytosolic, apicoplastic or shared between the two compartments by dual targeting but are absent from the mitochondrion. Consequently, tRNAs are very likely imported in their aminoacylated form. Furthermore, the unexpected absence of tRNAMet formyltransferase and peptide deformylase implies that the requirement for a specialized formylmethionyl‐tRNAMet for translation initiation is bypassed in the mitochondrion of Apicomplexa.


Nature Genetics | 2016

The genomic basis of parasitism in the Strongyloides clade of nematodes

Vicky L. Hunt; Isheng J. Tsai; Avril Coghlan; Adam J. Reid; Nancy Holroyd; Bernardo J. Foth; Alan Tracey; James A. Cotton; Eleanor Stanley; Helen Beasley; Hayley M. Bennett; Karen Brooks; Bhavana Harsha; Rei Kajitani; Arpita Kulkarni; Dorothee Harbecke; Eiji Nagayasu; Sarah Nichol; Yoshitoshi Ogura; Michael A. Quail; Nadine P. Randle; Dong Xia; Norbert W. Brattig; Hanns Soblik; Diogo M Ribeiro; Alejandro Sanchez-Flores; Tetsuya Hayashi; Takehiko Itoh; Dee R. Denver; Warwick N. Grant

Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families—families encoding astacin-like and SCP/TAPS proteins—is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.


European Journal of Cell Biology | 2002

Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals

Malcolm J. McConville; Steven C. Ilgoutz; Rohan D. Teasdale; Bernardo J. Foth; Antony Yaron Matthews; Kylie A. Mullin; Paul A. Gleeson

The GRIP domain, found in a family of coiled-coil peripheral membrane Golgi proteins, is a specific targeting sequence for the trans-Golgi network of animal cells. In this study we show that a coiled-coil protein with a GRIP domain occurs in the primitive eukaryote, Trypanosoma brucei, and that reporter proteins containing this domain can be used as a marker for the poorly characterized trans Golgi/trans-Golgi network of trypanosomatid parasites. The T. brucei GRIP domain, when fused to the carboxyl terminus of the green fluorescent protein (GFP-TbGRIP), was efficiently localized to the Golgi apparatus of transfected COS cells. Overexpression of GFP-TbGRIP in COS cells displaced the endogenous GRIP protein, GCC1p, from the Golgi apparatus indicating that the trypanosomatid and mammalian GRIP sequences interact with similar membrane determinants. GFP fusion proteins containing either the T. brucei GRIP domain or the human p230 GRIP (p230GRIP) domain were also expressed in the trypanosomatid parasite, Leishmania mexicana, and localized by fluorescence and immuno-electron microscopy to the trans face of the single Golgi apparatus and a short tubule that extended from the Golgi apparatus. Binding of GFP-p230GRIP to Golgi membranes in L. mexicana was abrogated by mutation of a critical tyrosine residue in the p230 GRIP domain. The levels of GFP-GRIP fusion proteins were dramatically reduced in stationary-phase L. mexicana promastigotes, suggesting that specific Golgi trafficking steps may be down-regulated as the promastigotes cease dividing. This study provides a protein marker for the trans-Golgi network of trypanosomatid parasites and suggests that the GRIP domain binds to a membrane component that has been highly conserved in eukaryotic evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Evolution of malaria parasite plastid targeting sequences

Christopher J. Tonkin; Bernardo J. Foth; Stuart A. Ralph; Nicole S. Struck; Alan F. Cowman; Geoffrey I. McFadden

The transfer of genes from an endosymbiont to its host typically requires acquisition of targeting signals by the gene product to ensure its return to the endosymbiont for function. Many hundreds of plastid-derived genes must have acquired transit peptides for successful relocation to the nucleus. Here, we explore potential evolutionary origins of plastid transit peptides in the malaria parasite Plasmodium falciparum. We show that exons of the P. falciparum genome could serve as transit peptides after exon shuffling. We further demonstrate that numerous randomized peptides and even whimsical sequences based on English words can also function as transit peptides in vivo. Thus, facile acquisition of transit peptides from existing sequence likely expedited endosymbiont integration through intracellular gene transfer.


Journal of Cell Science | 2008

Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism.

Nicole S. Struck; Susann Herrmann; Christine Langer; Andreas Krueger; Bernardo J. Foth; Klemens Engelberg; Ana Cabrera; Silvia Haase; Moritz Treeck; Matthias Marti; Alan F. Cowman; Tobias Spielmann; Tim W. Gilberger

Plasmodium falciparum, the causative agent of malaria, relies on a complex protein-secretion system for protein targeting into numerous subcellular destinations. Recently, a homologue of the Golgi re-assembly stacking protein (GRASP) was identified and used to characterise the Golgi organisation in this parasite. Here, we report on the presence of a splice variant that leads to the expression of a GRASP isoform. Although the first GRASP protein (GRASP1) relies on a well-conserved myristoylation motif, the variant (GRASP2) displays a different N-terminus, similar to GRASPs found in fungi. Phylogenetic analyses between GRASP proteins of numerous taxa point to an independent evolution of the unusual N-terminus that could reflect unique requirements for Golgi-dependent protein sorting and organelle biogenesis in P. falciparum. Golgi association of GRASP2 depends on the hydrophobic N-terminus that resembles a signal anchor, leading to a unique mode of Golgi targeting and membrane attachment.

Collaboration


Dive into the Bernardo J. Foth's collaboration.

Top Co-Authors

Avatar

Matthew Berriman

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Tonkin

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole S. Struck

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Adam J. Reid

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge