Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernardo Lopez is active.

Publication


Featured researches published by Bernardo Lopez.


Current Opinion in Nephrology and Hypertension | 2004

Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension.

Albert Sarkis; Bernardo Lopez; Richard J. Roman

Purpose of reviewCytochrome P-450 metabolites of arachidonic acid have been reported to play an important role in the control of renal function and vascular tone, and in the long-term control of arterial pressure. In this regard, 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. Epoxyeicosatrienoic acids are endothelium-derived relaxing factors that hyperpolarize vascular smooth muscle cells and also promote sodium excretion in the kidney. Recent findingsStudies have demonstrated that the expression of cytochrome P-450 enzymes and the synthesis of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the kidney and peripheral vasculature are altered in many genetic and experimental models of hypertension. The production of these compounds is altered following exposure to high-salt or high-fat diets, in hepatorenal syndrome, in diabetes and in patients with toxemia of pregnancy. However, the functional significance of changes in the formation of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the pathogenesis of hypertension are just being uncovered. SummaryThis review summarizes recent findings that address the issue of whether cytochrome P-450 metabolites of arachidonic acid play an important role in the regulation of renal tubular and peripheral vascular function and contribute to the pathogenesis of hypertension.


Hypertension | 2007

Elevations in Renal Interstitial Hydrostatic Pressure and 20-Hydroxyeicosatetraenoic Acid Contribute to Pressure Natriuresis

Jan Michael Williams; Albert Sarkis; Bernardo Lopez; Robert P. Ryan; Averia K. Flasch; Richard J. Roman

This study examined the role of changes in renal interstitial pressure on the renal levels of cytochrome P450 metabolites of arachidonic acid and compared the effects of inhibition of the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids with 1-aminobenzotriazole on the pressure-natriuretic response versus that seen after administration of HET0016, a more selective inhibitor of the formation of 20-HETE. Renal interstitial pressure rose by 3.4±0.3 mm Hg, and the levels of 20-HETE in renal cortical tissue doubled when renal perfusion pressure was increased from 100 to 160 mm Hg. Removal of the renal capsule prevented the increase in renal interstitial pressure and 20-HETE levels after an elevation in renal perfusion pressure. Urine flow and sodium excretion increased 5-fold when renal perfusion pressure was increased from 106 to 160 mm Hg. The administration of 1-aminobenzotriazole (50 mg/kg, IP) or HET0016 (10 mg/kg IV bolus plus 1 mg/kg per hour of infusion) decreased the pressure-natriuretic response by 50% and inhibited the renal formation of 20-HETE and epoxyeicosatrienoic acids by 90% and 50%, respectively. Administration of a lower dose of HET0016 (1 mg/kg per hour, IV) selectively reduced the formation of 20-HETE by 80% without inhibiting renal epoxygenase activity and blunted the pressure-natriuretic response by 42%. These results indicate that elevations in renal perfusion pressure increase 20-HETE levels in the kidney secondary to a rise in renal interstitial pressure. They also suggest that 20-HETE, rather than epoxyeicosatrienoic acids, modulates the pressure-natriuretic response, because selective blockade of the formation of 20-HETE with HET0016 blunts the response to the same extent as that seen after inhibition of the formation of 20-HETE and epoxyeicosatrienoic acids with 1-aminobenzotriazole.


American Journal of Physiology-heart and Circulatory Physiology | 2007

Heme oxygenase-1 induction improves ischemic renal failure: role of nitric oxide and peroxynitrite

Miguel G. Salom; Susana Nieto Cerón; Francisca Rodriguez; Bernardo Lopez; Isabel Hernández; José Gil Martínez; Adoración Martínez Losa; Francisco J. Fenoy

The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.


American Journal of Physiology-renal Physiology | 2008

Transfer of the CYP4A region of chromosome 5 from Lewis to Dahl S rats attenuates renal injury

Jan Michael Williams; Albert Sarkis; Kimberly M. Hoagland; Katherine Fredrich; Robert P. Ryan; Carol Moreno; Bernardo Lopez; Jozef Lazar; Francisco J. Fenoy; Mukut Sharma; Michael R. Garrett; Howard J. Jacob; Richard J. Roman

This study examined the effect of transfer of overlapping regions of chromosome 5 that includes (4A(+)) or excludes (4A(-)) the cytochrome P-450 4A (CYP4A) genes from the Lewis rat on the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and the development of hypertension-induced renal disease in congenic strains of Dahl salt-sensitive (Dahl S) rats. The production of 20-HETE was higher in the outer medulla of 4A(+) than in Dahl S or 4A(-) rats. Mean arterial pressure (MAP) rose to 190 +/- 7 and 185 +/- 3 mmHg in Dahl S and 4A(-) rats fed a high-salt (HS) diet for 21 days but only to 150 +/- 5 mmHg in the 4A(+) strain. Protein excretion increased to 423 +/- 40 and 481 +/- 37 mg/day in Dahl S and 4A(-) rats vs. 125 +/- 15 mg/day in the 4A(+) strain. Baseline glomerular capillary pressure (Pgc) was lower in 4A(+) rats (38 +/- 1 mmHg) than in Dahl S rats (42 +/- 1 mmHg). Pgc increased to 50 +/- 1 mmHg in Dahl S rats fed a HS diet, whereas it remained unaltered in 4A(+) rats (39 +/- 1 mmHg). Baseline glomerular permeability to albumin (P(alb)) was lower in 4A(+) rats (0.19 +/- 0.05) than in Dahl S or 4A(-) rats (0.39 +/- 0.02). P(alb) rose to approximately 0.61 +/- 0.03 in 4A(-) and Dahl S rats fed a HS diet for 7 days, but it remained unaltered in the 4A(+) rats. The expression of transforming growth factor-beta2 was higher in glomeruli of Dahl S rats than in 4A(+) rats fed either a low-salt (LS) or HS diet. Chronic administration of a 20-HETE synthesis inhibitor (HET0016; 10 mg.kg(-1).day(-1) sc) reversed the fall in MAP and renoprotection seen in 4A(+) rats. These results indicate that the introgression of the CYP4A genes from Lewis rats into the Dahl S rats increases the renal formation of 20-HETE and attenuates the development of hypertension and renal disease.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Chronic tempol treatment attenuates the renal hemodynamic effects induced by a heme oxygenase inhibitor in streptozotocin diabetic rats

Francisca Rodríguez; Bernardo Lopez; Cayetano Perez; Francisco J. Fenoy; Isabel Hernández; David E. Stec; Giovanni Li Volti; Miguel G. Salom

Heme oxygenase-1 (HO-1) is induced by oxidative stress and plays an important role in protecting the kidney from oxidant-mediated damage in the streptozotocin (STZ) rat model of type-1 diabetes mellitus (DM-1). HO-derived metabolites, presumably carbon monoxide (CO), mediate vasodilatory influences in the renal circulation, particularly in conditions linked to elevated HO-1 protein expression or diminished nitric oxide (NO) levels. We tested the hypothesis that diabetes increases oxidative stress and induces HO-1 protein expression, which contributes to regulate renal hemodynamics in conditions of low NO bioavailability. Two weeks after the induction of diabetes with STZ (65 mg/kg iv), Sprague-Dawley rats exhibited higher renal HO-1 protein expression, hyperglycemia, and elevated renal nitrotyrosine levels than control normoglycemic animals. In anesthetized diabetic rats, renal vascular resistance (RVR) was increased, and in vivo cortical NO levels were reduced (P < 0.05) compared with control animals. Acute administration of the HO inhibitor Stannous mesoporphyrin (SnMP; 40 μmol/kg iv) did not alter renal hemodynamics in control rats, but greatly decreased glomerular filtration rate and renal blood flow, markedly increasing RVR in hyperglycemic diabetic rats. Chronic oral treatment with the SOD mimetic tempol prevented the elevation of nitrotyrosine, the HO-1 protein induction, and the increases in RVR induced by SnMP in the diabetic group, without altering basal NO concentrations or RVR. Increasing concentrations of a CO donor (CO-releasing molecule-A1) on pressurized renal interlobar arteries elicited a comparable relaxation in vessels taken from control or diabetic animals. These results suggest that oxidative stress-induced HO-1 exerts vasodilatory actions that partially maintain renal hemodynamics in uncontrolled DM-1.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Sex differences in nitrosative stress during renal ischemia.

Francisca Rodríguez; Susana Nieto-Cerón; Francisco J. Fenoy; Bernardo Lopez; Isabel Hernández; Raquel Rodado Martinez; Ma José González Soriano; Miguel G. Salom

Females suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min(-1)·g kidney wt(-1), P < 0.01). Pretreatment with the antioxidants N-acetyl-L-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.


Current Pharmaceutical Design | 2013

Sexual Dimorphism in Renal Heme-Heme Oxygenase System in the Streptozotocin Diabetic Rats

Barbara Bonacasa; Cayetano Perez; Miguel G. Salom; Bernardo Lopez; Fara Saez-Belmonte; Pedro E. Martinez; Teresa Casas; Francisco J. Fenoy; Francisca Rodríguez

Heme Oxygenase (HO) -1 and -2 exert antioxidant, cytoprotective and vascular actions in male diabetic rats. However, there is no information about the expression and functional significance of the renal HO system in diabetic females. The present study tested the hypothesis that the HO system is differentially regulated in the kidney of female Sprague Dawley diabetic rats, protecting it from nitrosative and glomerular functional damage. Two weeks after the administration of streptozotocin (STZ; 65 mg/kg. i.p), males (DM) and females (DF) showed hyperglycemia, polyuria and elevated kidney/body weight ratio, compared to their control males (CM) and females (CF). In conscious animals, creatinine clearance was higher (0.5 ± 00 vs. 0.3 ± 00; ml/min/100g BW; p<0.05) and urinary albumin excretion was lower (0.7 ± 0.3 vs 3.1 ± 0.7; mg/day) in DF compared to DM. Acute administration of a HO inhibitor stannous mesoporphyrin (SnMP 40 mol/kg, i.v.) induced a greater renal vasoconstrictor response in DF than in DM. Western blot analysis of renal tissue revealed higher renal cortex HO-1 protein levels in DF compared to all other groups; by immunohistochemistry this induction of HO-1 in DF was localized in tubular segments and glomeruli. Furthermore, renal cortical concentration of nitrosylated protein was higher in DM than in DF animals and inversely related with HO-1 levels in both renal cortex and medulla. These data demonstrate that the HO-1 protein is induced in females, associated with renal vasodilation, decreased renal nitrosative stress and reduced albuminuria, indicating that the HO system is protecting the kidney from diabetes-induced damage specifically in females.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2001

N-acetyl-L-cysteine improves renal medullary hypoperfusion in acute renal failure.

Erica López Conesa; Fernando Valero; José Carlos Nadal; Francisco J. Fenoy; Bernardo Lopez; Begoña Arregui; Miguel G. Salom


Kidney International | 2004

Acute renal hemodynamic effects of dimanganese decacarbonyl and cobalt protoporphyrin

Begoña Arregui; Bernardo Lopez; Miguel G. Salom; Fernando Valero; Concepción Navarro; Francisco J. Fenoy


American Journal of Physiology-heart and Circulatory Physiology | 2006

Protective effects of epoxyeicosatrienoic acids on human endothelial cells from the pulmonary and coronary vasculature

Anuradha Dhanasekaran; Rula Al-Saghir; Bernardo Lopez; Daling Zhu; David D. Gutterman; Elizabeth R. Jacobs; Meetha Medhora

Collaboration


Dive into the Bernardo Lopez's collaboration.

Top Co-Authors

Avatar

Francisco J. Fenoy

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Roman

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Sarkis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Moreno

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Elizabeth R. Jacobs

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Howard J. Jacob

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Meetha Medhora

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge