Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernd Mueller-Roeber is active.

Publication


Featured researches published by Bernd Mueller-Roeber.


Nucleic Acids Research | 2010

PlnTFDB: updated content and new features of the plant transcription factor database

Paulino Pérez-Rodríguez; Diego Mauricio Riaño-Pachón; Luiz Gustavo Guedes Corrêa; Stefan A. Rensing; Birgit Kersten; Bernd Mueller-Roeber

The Plant Transcription Factor Database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/) is an integrative database that provides putatively complete sets of transcription factors (TFs) and other transcriptional regulators (TRs) in plant species (sensu lato) whose genomes have been completely sequenced and annotated. The complete sets of 84 families of TFs and TRs from 19 species ranging from unicellular red and green algae to angiosperms are included in PlnTFDB, representing >1.6 billion years of evolution of gene regulatory networks. For each gene family, a basic description is provided that is complemented by literature references, and multiple sequence alignments of protein domains. TF or TR gene entries include information of expressed sequence tags, 3D protein structures of homologous proteins, domain architecture and cross-links to other computational resources online. Moreover, the different species in PlnTFDB are linked to each other by means of orthologous genes facilitating cross-species comparisons.


BMC Bioinformatics | 2008

QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR

Samuel Arvidsson; Miroslaw Kwasniewski; Diego Mauricio Riaño-Pachón; Bernd Mueller-Roeber

BackgroundMedium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays.ResultsHere we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet http://www.quantprime.de/ or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96%.ConclusionQuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.


Plant Physiology | 2002

Inositol phospholipid metabolism in arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C

Bernd Mueller-Roeber; Christophe Pical

Phosphoinositides (PIs) constitute a minor fraction of total cellular lipids in all eukaryotic cells. They fulfill many important functions through interaction with a wide range of cellular proteins. Members of distinct inositol lipid kinase families catalyze the synthesis of these phospholipids from phosphatidylinositol. The hydrolysis of PIs involves phosphatases and isoforms of PI-specific phospholipase C. Although our knowledge of the roles played by plant PIs is clearly limited at present, there is no doubt that they are involved in many physiological processes during plant growth and development. In this review, we concentrate on inositol lipid-metabolizing enzymes from the model plant Arabidopsis for which biochemical characterization data are available, namely the inositol lipid kinases and PI-specific phospholipase Cs. The biochemical properties and structure of characterized and genome-predicted isoforms are presented and compared with those of the animal enzymes to show that the plant enzymes have some features clearly unique to this kingdom.


BMC Bioinformatics | 2007

PlnTFDB: an integrative plant transcription factor database

Diego Mauricio Riaño-Pachón; Slobodan Ruzicic; Ingo Dreyer; Bernd Mueller-Roeber

BackgroundTranscription factors (TFs) are key regulatory proteins that enhance or repress the transcriptional rate of their target genes by binding to specific promoter regions (i.e. cis-acting elements) upon activation or de-activation of upstream signaling cascades. TFs thus constitute master control elements of dynamic transcriptional networks. TFs have fundamental roles in almost all biological processes (development, growth and response to environmental factors) and it is assumed that they play immensely important functions in the evolution of species. In plants, TFs have been employed to manipulate various types of metabolic, developmental and stress response pathways. Cross-species comparison and identification of regulatory modules and hence TFs is thought to become increasingly important for the rational design of new plant biomass. Up to now, however, no computational repository is available that provides access to the largely complete sets of transcription factors of sequenced plant genomes.DescriptionPlnTFDB is an integrative plant transcription factor database that provides a web interface to access large (close to complete) sets of transcription factors of several plant species, currently encompassing Arabidopsis thaliana (thale cress), Populus trichocarpa (poplar), Oryza sativa (rice), Chlamydomonas reinhardtii and Ostreococcus tauri. It also provides an access point to its daughter databases of a species-centered representation of transcription factors (OstreoTFDB, ChlamyTFDB, ArabTFDB, PoplarTFDB and RiceTFDB). Information including protein sequences, coding regions, genomic sequences, expressed sequence tags (ESTs), domain architecture and scientific literature is provided for each family.ConclusionWe have created lists of putatively complete sets of transcription factors and other transcriptional regulators for five plant genomes. They are publicly available through http://plntfdb.bio.uni-potsdam.de. Further data will be included in the future when the sequences of other plant genomes become available.


Plant Journal | 2010

A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence

Salma Balazadeh; Hamad Siddiqui; Annapurna Devi Allu; Lilian P. Matallana-Ramirez; Camila Caldana; Mohammad Mehrnia; María-Inés Zanor; Barbara Köhler; Bernd Mueller-Roeber

The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.


The Plant Cell | 2012

JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

Anhui Wu; Annapurna Devi Allu; Prashanth Garapati; Hamad Siddiqui; Hakan Dortay; María-Inés Zanor; María Amparo Asensi-Fabado; Sergi Munné-Bosch; Carla António; Takayuki Tohge; Alisdair R. Fernie; Kerstin Kaufmann; Gang-Ping Xue; Bernd Mueller-Roeber; Salma Balazadeh

Aging in plants is an intricate process that balances vegetative growth with flowering and reproductive success. This work describes the identification of JUNGBRUNNEN1, a NAC transcription factor that regulates this process in Arabidopsis thaliana and additionally affects abiotic stress tolerance by activating expression of the DREB2A transcription factor. The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species–responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A.


The EMBO Journal | 2001

The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement

Nicola Gaedeke; Markus Klein; Uener Kolukisaoglu; Cyrille Forestier; Axel Müller; Mark Ansorge; Dirk Becker; Yasmine M. Mamnun; Karl Kuchler; Burkhard Schulz; Bernd Mueller-Roeber; Enrico Martinoia

In the present study, we investigated a new member of the ABC transporter superfamily of Arabidopsis thaliana, AtMRP5. AtMRP5 encodes a 167 kDa protein and exhibits low glutathione conjugate and glucuronide conjugate transport activity. Promotor‐β‐glucuronidase fusion constructs showed that AtMRP5 is expressed mainly in the vascular bundle and in the epidermis, especially guard cells. Using reverse genetics, we identified a plant with a T‐DNA insertion in AtMRP5 (mrp5‐1). mrp5‐1 exhibited decreased root growth and increased lateral root formation. Auxin levels in the roots of mrp5‐1 plants were increased. This observation may indicate that AtMRP5 works as an auxin conjugate transporter or that mutant plants are affected in ion uptake, which may lead to changes in auxin concentrations. Experiments on epidermal strips showed that in contrast to wild type, the sulfonylurea glibenclamide had no effect on stomatal opening in mrp5‐1 plants. This result strongly suggests that AtMRP5 may also function as an ion channel regulator.


Nucleic Acids Research | 2015

PLAZA 3.0: an access point for plant comparative genomics

Sebastian Proost; Michiel Van Bel; Dries Vaneechoutte; Yves Van de Peer; Dirk Inzé; Bernd Mueller-Roeber; Klaas Vandepoele

Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.


Plant Methods | 2007

A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors

Camila Caldana; Wolf-Rüdiger Scheible; Bernd Mueller-Roeber; Slobodan Ruzicic

BackgroundQuantitative reverse transcription – polymerase chain reaction (qRT-PCR) has been demonstrated to be particularly suitable for the analysis of weakly expressed genes, such as those encoding transcription factors. Rice (Oryza sativa L.) is an important crop and the most advanced model for monocotyledonous species; its nuclear genome has been sequenced and molecular tools are being developed for functional analyses. However, high-throughput methods for rice research are still limited and a large-scale qRT-PCR platform for gene expression analyses has not been reported.ResultsWe established a qRT-PCR platform enabling the multi-parallel determination of the expression levels of more than 2500 rice transcription factor genes. Additionally, using different rice cultivars, tissues and physiological conditions, we evaluated the expression stability of seven reference genes. We demonstrate this resource allows specific and reliable detection of the expression of transcription factor genes in rice.ConclusionMulti-parallel qRT-PCR allows the versatile and sensitive transcriptome profiling of large numbers of rice transcription factor genes. The new platform complements existing microarray-based expression profiling techniques, by allowing the analysis of lowly expressed transcription factor genes to determine their involvement in developmental or physiological processes. We expect that this resource will be of broad utility to the scientific community in the further development of rice as an important model for plant science.


Molecular Plant | 2011

ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana

Salma Balazadeh; Miroslaw Kwasniewski; Camila Caldana; Mohammad Mehrnia; María Inés Zanor; Gang-Ping Xue; Bernd Mueller-Roeber

We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1–GR fusion protein. Of the 42 up-regulated genes, 30 (∼70%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (∼76%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.

Collaboration


Dive into the Bernd Mueller-Roeber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang-Ping Xue

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge