Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takayuki Tohge is active.

Publication


Featured researches published by Takayuki Tohge.


Journal of Mass Spectrometry | 2010

MassBank: a public repository for sharing mass spectral data for life sciences.

Hisayuki Horai; Masanori Arita; Shigehiko Kanaya; Yoshito Nihei; Tasuku Ikeda; Kazuhiro Suwa; Yuya Ojima; Kenichi Tanaka; Satoshi Tanaka; Ken Aoshima; Yoshiya Oda; Yuji Kakazu; Miyako Kusano; Takayuki Tohge; Fumio Matsuda; Yuji Sawada; Masami Yokota Hirai; Hiroki Nakanishi; Kazutaka Ikeda; Naoshige Akimoto; Takashi Maoka; Hiroki Takahashi; Takeshi Ara; Nozomu Sakurai; Hideyuki Suzuki; Daisuke Shibata; Steffen Neumann; Takashi Iida; Ken Tanaka; Kimito Funatsu

MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis

Masami Yokota Hirai; Kenjiro Sugiyama; Yuji Sawada; Takayuki Tohge; Takeshi Obayashi; Akane Suzuki; Ryoichi Araki; Nozomu Sakurai; Hideyuki Suzuki; Koh Aoki; Hideki Goda; Osamu Ishizaki Nishizawa; Daisuke Shibata; Kazuki Saito

Understanding plant metabolism as an integrated system is essential for metabolic engineering aimed at the effective production of compounds useful to human life and the global environment. The “omics” approach integrates transcriptome and metabolome data into a single data set and can lead to the identification of unknown genes and their regulatory networks involved in metabolic pathways of interest. One of the intriguing, although poorly described metabolic pathways in plants is the biosynthesis of glucosinolates (GSLs), a group of bioactive secondary products derived from amino acids that are found in the family Brassicaceae. Here we report the discovery of two R2R3-Myb transcription factors that positively control the biosynthesis of GSLs in Arabidopsis thaliana by an integrated omics approach. Combined transcriptome coexpression analysis of publicly available, condition-independent data and the condition-specific (i.e., sulfur-deficiency) data identified Myb28 and Myb29 as candidate transcription factor genes specifically involved in the regulation of aliphatic GSL production. Analysis of a knockout mutant and ectopic expression of the gene demonstrated that Myb28 is a positive regulator for basal-level production of aliphatic GSLs. Myb29 presumably plays an accessory function for methyl jasmonate-mediated induction of a set of aliphatic GSL biosynthetic genes. Overexpression of Myb28 in Arabidopsis-cultured suspension cells, which do not normally synthesize GSLs, resulted in the production of large amounts of GSLs, suggesting the possibility of efficient industrial production of GSLs by manipulation of these transcription factors. A working model for regulation of GSL production involving these genes, renamed Production of Methionine-Derived Glucosinolate (PMG) 1 and 2, are postulated.


The Plant Cell | 2008

Comprehensive Flavonol Profiling and Transcriptome Coexpression Analysis Leading to Decoding Gene–Metabolite Correlations in Arabidopsis

Keiko Yonekura-Sakakibara; Takayuki Tohge; Fumio Matsuda; Ryo Nakabayashi; Hiromitsu Takayama; Rie Niida; Akiko Watanabe-Takahashi; Eri Inoue; Kazuki Saito

To complete the metabolic map for an entire class of compounds, it is essential to identify gene–metabolite correlations of a metabolic pathway. We used liquid chromatography–mass spectrometry (LC-MS) to identify the flavonoids produced by Arabidopsis thaliana wild-type and flavonoid biosynthetic mutant lines. The structures of 15 newly identified and eight known flavonols were deduced by LC-MS profiling of these mutants. Candidate genes presumably involved in the flavonoid pathway were delimited by transcriptome coexpression network analysis using public databases, leading to the detailed analysis of two flavonoid pathway genes, UGT78D3 (At5g17030) and RHM1 (At1g78570). The levels of flavonol 3-O-arabinosides were reduced in ugt78d3 knockdown mutants, suggesting that UGT78D3 is a flavonol arabinosyltransferase. Recombinant UGT78D3 protein could convert quercetin to quercetin 3-O-arabinoside. The strict substrate specificity of UGT78D3 for flavonol aglycones and UDP-arabinose indicate that UGT78D3 is a flavonol arabinosyltransferase. A comparison of flavonol profile in RHM knockout mutants indicated that RHM1 plays a major role in supplying UDP-rhamnose for flavonol modification. The rate of flavonol 3-O-glycosylation is more affected than those of 7-O-glycosylation by the supply of UDP-rhamnose. The precise identification of flavonoids in conjunction with transcriptomics thus led to the identification of a gene function and a more complete understanding of a plant metabolic network.


The Plant Cell | 2009

Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

Grit Rubin; Takayuki Tohge; Fumio Matsuda; Kazuki Saito; Wolf-Rüdiger Scheible

Nitrogen (N) and nitrate (NO3−) per se regulate many aspects of plant metabolism, growth, and development. N/NO3− also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3−-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO3− strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO3−-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO3− uptake and assimilation, resulting in altered NO3− content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.


Nature | 2011

Metabolic priming by a secreted fungal effector

Armin Djamei; Kerstin Schipper; Franziska Rabe; Anupama Ghosh; Volker Vincon; Jörg Kahnt; Sonia Osorio; Takayuki Tohge; Alisdair R. Fernie; Ivo Feussner; Kirstin Feussner; Peter Meinicke; York-Dieter Stierhof; Heinz Schwarz; Boris Macek; Matthias Mann; Regine Kahmann

Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.


The Plant Cell | 2006

Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism

Akiko Maruyama-Nakashita; Yumiko Nakamura; Takayuki Tohge; Kazuki Saito; Hideki Takahashi

Sulfur is an essential macronutrient required for plant growth. To identify key transcription factors regulating the sulfur assimilatory pathway, we screened Arabidopsis thaliana mutants using a fluorescent reporter gene construct consisting of the sulfur limitation-responsive promoter of the SULTR1;2 sulfate transporter and green fluorescent protein as a background indicator for monitoring plant sulfur responses. The isolated mutant, sulfur limitation1 (slim1), was unable to induce SULTR1;2 transcripts under low-sulfur (–S) conditions. Mutations causing the sulfur limitation responseless phenotypes of slim1 were identified in an EIL family transcription factor, ETHYLENE-INSENSITIVE3-LIKE3 (EIL3), whose functional identity with SLIM1 was confirmed by genetic complementation. Sulfate uptake and plant growth on –S were significantly reduced by slim1 mutations but recovered by overexpression of SLIM1. SLIM1 functioned as a central transcriptional regulator, which controlled both the activation of sulfate acquisition and degradation of glucosinolates under –S conditions. Metabolite analysis indicated stable accumulation of glucosinolates in slim1 mutants, even under –S conditions, particularly in the molecular species with methylsulfinylalkyl side chains beneficial to human health. Overexpression of SLIM1 and its rice (Oryza sativa) homologs, but no other EIL genes of Arabidopsis, restored the sulfur limitation responseless phenotypes of slim1 mutants, suggesting uniqueness of the SLIM1/EIL3 subgroup members as sulfur response regulators.


The Plant Cell | 2012

JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

Anhui Wu; Annapurna Devi Allu; Prashanth Garapati; Hamad Siddiqui; Hakan Dortay; María-Inés Zanor; María Amparo Asensi-Fabado; Sergi Munné-Bosch; Carla António; Takayuki Tohge; Alisdair R. Fernie; Kerstin Kaufmann; Gang-Ping Xue; Bernd Mueller-Roeber; Salma Balazadeh

Aging in plants is an intricate process that balances vegetative growth with flowering and reproductive success. This work describes the identification of JUNGBRUNNEN1, a NAC transcription factor that regulates this process in Arabidopsis thaliana and additionally affects abiotic stress tolerance by activating expression of the DREB2A transcription factor. The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species–responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A.


Plant Journal | 2014

Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids

Ryo Nakabayashi; Keiko Yonekura-Sakakibara; Kaoru Urano; Makoto Suzuki; Yutaka Yamada; Tomoko Nishizawa; Fumio Matsuda; Mikiko Kojima; Hitoshi Sakakibara; Kazuo Shinozaki; Anthony J. Michael; Takayuki Tohge; Mami Yamazaki; Kazuki Saito

The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought stress in Arabidopsis thaliana. Metabolome and transcriptome profiling and experiments with oxidative and drought stress in wild-type, single overexpressors of MYB12/PFG1 (PRODUCTION OF FLAVONOL GLYCOSIDES1) or MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), double overexpressors of MYB12 and PAP1, transparent testa4 (tt4) as a flavonoid-deficient mutant, and flavonoid-deficient MYB12 or PAP1 overexpressing lines (obtained by crossing tt4 and the individual MYB overexpressor) demonstrated that flavonoid overaccumulation was key to enhanced tolerance to such stresses. Antioxidative activity assays using 2,2-diphenyl-1-picrylhydrazyl, methyl viologen, and 3,3′-diaminobenzidine clearly showed that anthocyanin overaccumulation with strong in vitro antioxidative activity mitigated the accumulation of reactive oxygen species in vivo under oxidative and drought stress. These data confirm the usefulness of flavonoids for enhancing both biotic and abiotic stress tolerance in crops.


Plant Physiology and Biochemistry | 2013

The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity

Kazuki Saito; Keiko Yonekura-Sakakibara; Ryo Nakabayashi; Yasuhiro Higashi; Mami Yamazaki; Takayuki Tohge; Alisdair R. Fernie

Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.


Journal of Biological Chemistry | 2007

Identification of a Flavonol 7-O-Rhamnosyltransferase Gene Determining Flavonoid Pattern in Arabidopsis by Transcriptome Coexpression Analysis and Reverse Genetics

Keiko Yonekura-Sakakibara; Takayuki Tohge; Rie Niida; Kazuki Saito

Glycosylation plays a major role in the remarkable chemical diversity of flavonoids in plants including Arabidopsis thaliana. The wide diversity encoded by the large family-1 glycosyltransferase (UGT) gene family makes it difficult to determine the biochemical function of each gene solely from its primary sequence. Here we used transcriptome coexpression analysis combined with a reverse genetics approach to identify a gene that is prominent in determining the flavonoid composition of Arabidopsis. Using transcriptome coexpression analysis accessible on the ATTED-II public data base, the expression pattern of a UGT gene, UGT89C1, was found to be highly correlated with known flavonoid biosynthetic genes. No C-7 rhamnosylated flavonols were detected in either of two T-DNA ugt89c1 mutants. This specific metabolite deficiency in the mutants was complemented by stable transformation with the genomic fragment containing intact UGT89C1. Glutathione S-transferasefused recombinant UGT89C1 protein converted kaempferol 3-O-glucoside to kaempferol 3-O-glucoside-7-O-rhamnoside and recognized 3-O-glycosylated flavonols and UDP-rhamnose as substrates, but not flavonol aglycones, 3-O-glycosylated anthocyanins or other UDP-sugars. These results show that UGT89C1 is a flavonol 7-O-rhamnosyltransferase. The abundance of UGT89C1 transcripts in floral buds was consistent with the flavonoid accumulation of C-7 rhamnosylated flavonols in Arabidopsis organs. Our present study demonstrates that the integration of transcriptome coexpression analysis with a reverse genetic approach is a versatile tool for understanding a multigene family of a metabolic pathway in Arabidopsis.

Collaboration


Dive into the Takayuki Tohge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Nunes-Nesi

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Wagner L. Araújo

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge