Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard J. Eikmanns is active.

Publication


Featured researches published by Bernhard J. Eikmanns.


Journal of Biotechnology | 2003

The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins

Jörn Kalinowski; Brigitte Bathe; Daniela Bartels; Nicole Bischoff; Michael Bott; Andreas Burkovski; Nicole Dusch; Lothar Eggeling; Bernhard J. Eikmanns; Lars Gaigalat; Alexander Goesmann; Michael Hartmann; Klaus Huthmacher; Reinhard Krämer; Burkhard Linke; Alice C. McHardy; Folker Meyer; Bettina Möckel; Walter Pfefferle; Alfred Pühler; Daniel Rey; Christian Rückert; Oliver Rupp; Hermann Sahm; Volker F. Wendisch; Iris Wiegräbe; Andreas Tauch

The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.


Applied and Environmental Microbiology | 2011

Corynebacterium glutamicum Tailored for Efficient Isobutanol Production

Bastian Blombach; Tanja Riester; Stefan Wieschalka; Christian Ziert; Jung-Won Youn; Volker F. Wendisch; Bernhard J. Eikmanns

ABSTRACT We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (YP/S) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the YP/S to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the YP/S, indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH+H+ to NADPH+H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h−1, and showed an overall YP/S of about 0.48 mol per mol of glucose in the production phase.


Microbiology | 1994

Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase

Bernhard J. Eikmanns; Natalie Thum-Schmitz; Lothar Eggeling; Kai-Ulf Ludtke; Hermann Sahm

Citrate synthase catalyses the initial reaction of the citric acid cycle and can therefore be considered as the rate-controlling enzyme for the entry of substrates into the cycle. In Corynebacterium glutamicum, the specific activity of citrate synthase was found to be independent of the growth substrate and of the growth phase. The enzyme was not affected by NADH or 2-oxoglutarate and was only weakly inhibited by ATP (apparent Ki = 10 mM). These results suggest that in C. glutamicum neither the formation nor the activity of citrate synthase is subject to significant regulation. The citrate synthase gene, gltA, was isolated, subcloned on plasmid pJC1 and introduced into C. glutamicum. Relative to the wild-type the recombinant strains showed six- to eightfold higher specific citrate synthase activity. The nucleotide sequence of a 3007 bp DNA fragment containing the gltA gene and its flanking regions was determined. The predicted gltA gene product consists of 437 amino acids (M(r) 48,936) and shows up to 49.7% identity with citrate synthase polypeptides from other organisms. Inactivation of the chromosomal gltA gene by gene-directed mutagenesis led to absence of detectable citrate synthase activity and to citrate (or glutamate) auxotrophy, indicating that only one citrate synthase is present in C. glutamicum. Transcriptional analysis by Northern (RNA) hybridization and primer extension experiments revealed that the gltA gene is monocistronic (1.45 kb mRNA) and that its transcription initiates at two consecutive G residues located 121 and 120 bp upstream of the translational start.


Journal of Bacteriology | 2000

Quantitative Determination of Metabolic Fluxes during Coutilization of Two Carbon Sources: Comparative Analyses with Corynebacterium glutamicum during Growth on Acetate and/or Glucose

Volker F. Wendisch; Albert A. de Graaf; Hermann Sahm; Bernhard J. Eikmanns

Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.


Gene | 1991

A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing

Bernhard J. Eikmanns; Eva Kleinertz; Wolfgang Liebl; Hermann Sahm

A new family of vectors including cloning vectors (pEK0; pEC5), an expression vector (pEKEx1), and promoter probe vectors (pEKpllacZ; pEKplCm), has been constructed. All these shuttle vectors are based on the replication origins of the corynebacterial pBL1 and the Escherichia coli ColE1 plasmids, and thus are able to replicate in Corynebacterium glutamicum and E. coli. Plasmids pEK0 and pEC5 carry multiple restriction sites useful for gene cloning and the kanamycin- or chloramphenicol-resistance-encoding gene from Tn903 or from Tn9, respectively. In C. glutamicum, both vectors are compatible with vectors containing the corynebacterial pHM1519 replicon. Based on plasmid pEK0, the expression vector pEKEx1 was developed to allow for isopropyl-beta-D-thiogalactopyranoside-inducible expression of inserted genes in C. glutamicum and E. coli. Also based on pEK0, the promoter probe vectors pEKpllacZ and pEKplCm were constructed to carry the promoterless lacZ or cat reporter genes downstream from useful cloning sites, for assaying the transcriptional activity of cloned fragments.


Archives of Microbiology | 1986

Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle

Rolf Schauder; Bernhard J. Eikmanns; Rudolf K. Thauer; Fritz Widdel; Georg Fuchs

In several sulfate-reducing bacteria capable of complete oxidation of acetate (or acetyl CoA), the citric acid cycle is not operative. No 2-oxoglutarate dehydrogenase activity was found in these organisms, and the labelling pattern of oxaloacetate excludes its synthesis via 2-oxo-glutarate. These sulfate-reducers contained, however, high activities of the enzymes carbon monoxide dehydrogenase and formate dehydrogenase and catalyzed an isotope exchange between CO2 and the carboxyl group of acetate (or acetyl CoA), showing a direct C-C-cleavage of activated acetic acid. These findings suggest that in the investigated sulfate-reducers acetate is oxidized to CO2 via C1 intermediates. The proposed pathway provides a possible explanation for the reported different fluoroacetate sensitivity of acetate oxidation by anaerobic bacteria, for mini-methane formation, as well as for the postulated anaerobic methane oxidation by special sulfate-reducers.


Journal of Biotechnology | 2003

Acetate metabolism and its regulation in Corynebacterium glutamicum.

Robert Gerstmeir; Volker F. Wendisch; Stephanie Schnicke; Hong Ruan; Mike Farwick; Dieter J. Reinscheid; Bernhard J. Eikmanns

The amino acid producing Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. Among the substrates metabolized are glucose and acetate which both can also serve as substrates for amino acid production. Based on biochemical, genetic and regulatory studies and on quantitative determination of metabolic fluxes during utilization of acetate and/or glucose, this review summarizes the present knowledge on the different steps of the fundamental pathways of acetate utilization in C. glutamicum, namely, on acetate transport, acetate activation, tricarboxylic acid (TCA) cycle, glyoxylate cycle and gluconeogenesis. It becomes evident that, although the pathways of acetate utilization follow the same theme in many bacteria, important biochemical, genetic and regulatory peculiarities exist in C. glutamicum. Recent genome wide and comparative expression analyses in C. glutamicum cells grown on glucose and on acetate substantiated previously identified transcriptional regulation of acetate activating enzymes and of glyoxylate cycle enzymes. Additionally, a variety of genes obviously also under transcriptional control in response to the presence or absence of acetate in the growth medium were uncovered. These genes, thus also belonging to the acetate stimulon of C. glutamicum, include genes coding for TCA cycle enzymes (e.g. aconitase and succinate dehydrogenase), for gluconeogenesis (phosphoenolpyruvate carboxykinase), for glycolysis (pyruvate dehydrogenase E1) and genes coding for proteins with hitherto unknown function. Although the basic mechanism of transcriptional regulation of the enzymes involved in acetate metabolism is not yet understood, some recent findings led to a better understanding of the adaptation of C. glutamicum to acetate at the molecular level.


Microbiology | 1996

Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif.

Miroslav Pátek; Bernhard J. Eikmanns; Jaroslav Pátek; Hermann Sahm

Relatively limited information about promoter structures in Corynebacterium glutamicum has been available until now. With the aim of isolating and characterizing such transcription initiation signals, random Sau3A fragments of C. glutamicum chromosomal DNA and of the corynebacterial phage phi GA1 were cloned into the promoter probe vector pEKplCm and selected for promoter activity by chloramphenicol resistance of transformed C. glutamicum cells. The nucleotide sequence of ten chromosomal and three phage fragments was determined and the transcriptional start (TS) sites were localized by primer extension analyses. Additionally, the promoters of five previously isolated C. glutamicum genes were cloned and mapped. All of the isolated promoters were also functional in the heterologous host Escherichia coli. A comparative analysis of the newly characterized promoter sequences together with published promoters from C. glutamicum revealed conserved sequences centred about 35 bp (ttGcca) and 10 bp (TA.aaT) upstream of the TS site. The position of these motifs and the motifs themselves are comparable to the -35 and -10 promoter consensus sequences of other Gram-positive and Gram-negative bacteria, indicating that they represent transcription initiation signals in C. glutamicum. However, the C. glutamicum consensus hexamer of the -35 region is much less conserved than in E. coli, Bacillus, Lactobacillus and Streptococcus.


Applied Microbiology and Biotechnology | 1991

Amplification of three threonine biosynthesis genes inCorynebacterium glutamicum and its influence on carbon flux in different strains

Bernhard J. Eikmanns; Markus Metzger; Dieter J. Reinscheid; Manfred Kircher; Hermann Sahm

SummaryThe hom-thrB operon (homoserine dehydrogenase/homoserine kinase) and the thrC gene (threonine synthase) of Corynebacterium glutamicum ATCC 13 032 and the homFBR (homoserine dehydrogenase resistant to feedback inhibition by threonine) alone as well as homFBR-thrB operon of C. glutamicum DM 368-3 were cloned separately and in combination in the Escherichia coli/C. glutamicum shuttle vector pEK0 and introduced into different corynebacterial strains. All recombinant strains showed 8- to 20-fold higher specific activities of homoserine dehydrogenase, homoserine kinase, and/or threonine synthase compared to the respective host. In wild-type C. glutamicum, amplification of the threonine genes did not result in secretion of threonine. In the lysine producer C. glutamicum DG 52-5 and in the lysine-plus-threonine producer C. glutamicum DM 368-3 overexpression of hom-thrB resulted in a notable shift of carbon flux from lysine to threonine whereas cloning of homFBR-thrB as well as of homFBR in C. glutamicum DM 368-3 led to a complete shift towards threonine or towards threonine and its precursor homoserine, respectively. Overexpression of thrC alone or in combination with that of homFBR and thrB had no effect on threonine or lysine formation in all recombinant strains tested.


Journal of Bacteriology | 2004

RamB, a Novel Transcriptional Regulator of Genes Involved in Acetate Metabolism of Corynebacterium glutamicum

Robert Gerstmeir; Annette Cramer; Petra Dangel; Steffen Schaffer; Bernhard J. Eikmanns

The adaptation of Corynebacterium glutamicum to acetate as a carbon and energy source involves transcriptional regulation of the pta-ack operon coding for the acetate-activating enzymes phosphotransacetylase and acetate kinase and of the aceA and aceB genes coding for the glyoxylate cycle enzymes isocitrate lyase and malate synthase, respectively. Deletion and mutation analysis of the respective promoter regions led to the identification of highly conserved 13-bp motifs (AA/GAACTTTGCAAA) as cis-regulatory elements for expression of the pta-ack operon and the aceA and aceB genes. By use of DNA affinity chromatography, a 53-kDa protein specifically binding to the promoter/operator region of the pta-ack operon was purified. Mass spectrometry and peptide mass fingerprinting identified the protein as a putative transcriptional regulator (which was designated RamB). Purified His-tagged RamB protein was shown to bind specifically to both the pta-ack and the aceA/aceB promoter/operator regions. Directed deletion of the ramB gene in the genome of C. glutamicum resulted in mutant strain RG1. Whereas the wild type of C. glutamicum showed high-level specific activities of acetate kinase, phosphotransacetylase, isocitrate lyase, and malate synthase when grown on acetate and low-level specific activities when grown on glucose as sole carbon and energy sources, mutant RG1 showed high-level specific activities with all four enzymes irrespective of the substrate. Comparative transcriptional cat fusion experiments revealed that this deregulation takes place at the level of transcription. The results indicate that RamB is a negative transcriptional regulator of genes involved in acetate metabolism of C. glutamicum.

Collaboration


Dive into the Bernhard J. Eikmanns's collaboration.

Top Co-Authors

Avatar

Hermann Sahm

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Bott

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lothar Eggeling

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge