Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker F. Wendisch is active.

Publication


Featured researches published by Volker F. Wendisch.


Journal of Biotechnology | 2003

The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins

Jörn Kalinowski; Brigitte Bathe; Daniela Bartels; Nicole Bischoff; Michael Bott; Andreas Burkovski; Nicole Dusch; Lothar Eggeling; Bernhard J. Eikmanns; Lars Gaigalat; Alexander Goesmann; Michael Hartmann; Klaus Huthmacher; Reinhard Krämer; Burkhard Linke; Alice C. McHardy; Folker Meyer; Bettina Möckel; Walter Pfefferle; Alfred Pühler; Daniel Rey; Christian Rückert; Oliver Rupp; Hermann Sahm; Volker F. Wendisch; Iris Wiegräbe; Andreas Tauch

The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.


Journal of Bacteriology | 2005

Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity

Harald Weber; Tino Polen; Johanna Heuveling; Volker F. Wendisch; Regine Hengge

The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.


Applied and Environmental Microbiology | 2011

Corynebacterium glutamicum Tailored for Efficient Isobutanol Production

Bastian Blombach; Tanja Riester; Stefan Wieschalka; Christian Ziert; Jung-Won Youn; Volker F. Wendisch; Bernhard J. Eikmanns

ABSTRACT We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (YP/S) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the YP/S to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the YP/S, indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH+H+ to NADPH+H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h−1, and showed an overall YP/S of about 0.48 mol per mol of glucose in the production phase.


Journal of Bacteriology | 2000

Quantitative Determination of Metabolic Fluxes during Coutilization of Two Carbon Sources: Comparative Analyses with Corynebacterium glutamicum during Growth on Acetate and/or Glucose

Volker F. Wendisch; Albert A. de Graaf; Hermann Sahm; Bernhard J. Eikmanns

Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.


Molecular Microbiology | 2002

LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.

Daniela Lehnen; C. Blumer; Tino Polen; B. Wackwitz; Volker F. Wendisch; Gottfried Unden

The function of the LysR‐type regulator LrhA of Escherichia coli was defined by comparing whole‐genome mRNA profiles from wild‐type E. coli and an isogenic lrhA mutant on a DNA microarray. In the lrhA mutant, a large number (48) of genes involved in flagellation, motility and chemotaxis showed relative mRNA abundances increased by factors between 3 and 80. When a representative set of five flagellar, motility and chemotaxis genes was tested in lacZ reporter gene fusions, similar factors for derepression were found in the lrhA mutant. In gel retardation experiments, the LrhA protein bound specifically to flhD and lrhA promoter DNA (apparent KD≈ 20 nM), whereas the promoters of fliC, fliA and trg were not bound by LrhA. The expression of flhDC (encoding FlhD2C2) was derepressed by a factor of 3.5 in the lrhA mutant. FlhD2C2 is known as the master regulator for the expression of flagellar and chemotaxis genes. By DNase I footprinting, LrhA binding sites at the flhDC and lrhA promoters were identified. The lrhA gene was under positive autoregulation by LrhA as shown by gel retardation and lrhA expression studies. It is suggested that LrhA is a key regulator controlling the transcription of flagellar, motility and chemotaxis genes by regulating the synthesis and concentration of FlhD2C2.


Journal of Biotechnology | 2003

Acetate metabolism and its regulation in Corynebacterium glutamicum.

Robert Gerstmeir; Volker F. Wendisch; Stephanie Schnicke; Hong Ruan; Mike Farwick; Dieter J. Reinscheid; Bernhard J. Eikmanns

The amino acid producing Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. Among the substrates metabolized are glucose and acetate which both can also serve as substrates for amino acid production. Based on biochemical, genetic and regulatory studies and on quantitative determination of metabolic fluxes during utilization of acetate and/or glucose, this review summarizes the present knowledge on the different steps of the fundamental pathways of acetate utilization in C. glutamicum, namely, on acetate transport, acetate activation, tricarboxylic acid (TCA) cycle, glyoxylate cycle and gluconeogenesis. It becomes evident that, although the pathways of acetate utilization follow the same theme in many bacteria, important biochemical, genetic and regulatory peculiarities exist in C. glutamicum. Recent genome wide and comparative expression analyses in C. glutamicum cells grown on glucose and on acetate substantiated previously identified transcriptional regulation of acetate activating enzymes and of glyoxylate cycle enzymes. Additionally, a variety of genes obviously also under transcriptional control in response to the presence or absence of acetate in the growth medium were uncovered. These genes, thus also belonging to the acetate stimulon of C. glutamicum, include genes coding for TCA cycle enzymes (e.g. aconitase and succinate dehydrogenase), for gluconeogenesis (phosphoenolpyruvate carboxykinase), for glycolysis (pyruvate dehydrogenase E1) and genes coding for proteins with hitherto unknown function. Although the basic mechanism of transcriptional regulation of the enzymes involved in acetate metabolism is not yet understood, some recent findings led to a better understanding of the adaptation of C. glutamicum to acetate at the molecular level.


Archives of Microbiology | 1997

Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria

Susanne Textor; Volker F. Wendisch; Albert A. de Graaf; Uta Müller; Monica Linder; Dietmar Linder; Wolfgang Buckel

Escherichia coli grew in a minimal medium on propionate as the sole carbon and energy source. Initially a lag phase of 4–7 days was observed. Cells adapted to propionate still required 1–2 days before growth commenced. Incorporation of (2-13C), (3-13C) or (2H3)propionate into alanine revealed by NMR that propionate was oxidized to pyruvate without randomisation of the carbon skeleton and excluded pathways in which the methyl group was transiently converted to a methylene group. Extracts of propionate-grown cells contained a specific enzyme that catalyses the condensation of propionyl-CoA with oxaloacetate, most probably to methylcitrate. The enzyme was purified and identified as the already-known citrate synthase II. By 2-D gel electrophoresis, the formation of a second propionate-specific enzyme with sequence similarities to isocitrate lyases was detected. The genes of both enzymes were located in a putative operon with high identities (at least 76% on the protein level) with the very recently discovered prp operon from Salmonella typhimurium. The results indicate that E. coli oxidises propionate to pyruvate via the methylcitrate cycle known from yeast. The 13C patterns of aspartate and glutamate are consistent with the further oxidation of pyruvate to acetyl-CoA. Oxaloacetate is predominantly generated via the glyoxylate cycle rather than by carboxylation of phosphoenolpyruvate.


Applied and Environmental Microbiology | 2005

Characterization of a Corynebacterium glutamicum Lactate Utilization Operon Induced during Temperature-Triggered Glutamate Production

Corinna Stansen; Davin Uy; Stéphane Delaunay; Lothar Eggeling; Jean-Louis Goergen; Volker F. Wendisch

ABSTRACT Gene expression changes of glutamate-producing Corynebacterium glutamicum were identified in transcriptome comparisons by DNA microarray analysis. During glutamate production induced by a temperature shift, C. glutamicum strain 2262 showed significantly higher mRNA levels of the NCgl2816 and NCgl2817 genes than its non-glutamate-producing derivative 2262NP. Reverse transcription-PCR analysis showed that the two genes together constitute an operon. NCgl2816 putatively codes for a lactate permease, while NCgl2817 was demonstrated to encode quinone-dependent l-lactate dehydrogenase, which was named LldD. C. glutamicum LldD displayed Michaelis-Menten kinetics for the substrate l-lactate with a Km of about 0.51 mM. The specific activity of LldD was about 10-fold higher during growth on l-lactate or on an l-lactate-glucose mixture than during growth on glucose, d-lactate, or pyruvate, while the specific activity of quinone-dependent d-lactate dehydrogenase differed little with the carbon source. RNA levels of NCgl2816 and lldD were about 18-fold higher during growth on l-lactate than on pyruvate. Disruption of the NCgl2816-lldD operon resulted in loss of the ability to utilize l-lactate as the sole carbon source. Expression of lldD restored l-lactate utilization, indicating that the function of the permease gene NCgl2816 is dispensable, while LldD is essential, for growth of C. glutamicum on l-lactate.


Journal of Biotechnology | 2011

Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.

Jens Schneider; Karin Niermann; Volker F. Wendisch

Amino acid production processes with Corynebacterium glutamicum are based on media containing glucose from starch hydrolysis or fructose and sucrose as present in molasses. Simultaneous utilization of various carbon sources, including glucose, fructose and sucrose, in blends is a typical characteristic of this bacterium. The renewable non-food carbon source arabinose, which is present in hemicellulosic hydrolysates, cannot be utilized by most C. glutamicum strains. Heterologous expression of the araBAD operon from Escherichia coli in the wild-type and in an l-lysine producing strain of C. glutamicum was shown to enable production of l-glutamate and l-lysine, respectively, from arabinose as sole carbon source. l-Ornithine and l-arginine producing strains were constructed and shown to produce l-ornithine and l-arginine from arabinose when araBAD from E. coli was expressed. Moreover, the recombinant strains produced l-glutamate, l-lysine, l-ornithine and l-arginine respectively, from arabinose also when glucose-arabinose blends were used as carbon sources.


Archive | 2007

Amino acid biosynthesis : pathways, regulation and metabolic engineering

Volker F. Wendisch

Production of Glutamate and Glutamate-Related Amino Acids: Molecular Mechanism Analysis and Metabolic Engineering.- The l-Lysine Story: From Metabolic Pathways to Industrial Production.- l-Threonine.- Aromatic Amino Acids.- Branched-Chain Amino Acids.- Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum.- Cysteine Metabolism and Its Regulation in Bacteria.- Microbial Arginine Biosynthesis: Pathway, Regulation and Industrial Production.- l-Serine and Glycine.- Alanine, Aspartate, and Asparagine Metabolism in Microorganisms.- Amino Acid Transport Systems in Biotechnologically Relevant Bacteria.- Occurrence, Biosynthesis, and Biotechnological Production of Dipeptides.- Genomes and Genome-Level Engineering of Amino Acid-Producing Bacteria.

Collaboration


Dive into the Volker F. Wendisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Sahm

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Michael Bott

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Tino Polen

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris Rittmann

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge