Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Klarner is active.

Publication


Featured researches published by Bernhard Klarner.


PLOS ONE | 2011

Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

Nico Eisenhauer; Alexandru Milcu; Alexander C.W. Sabais; Holger Bessler; Johanna Brenner; Christof Engels; Bernhard Klarner; Mark Maraun; Stephan Partsch; Christiane Roscher; Felix Schonert; Vicky M. Temperton; Karolin Thomisch; Alexandra Weigelt; Wolfgang W. Weisser; Stefan Scheu

Background One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments. Methodology/Principal Findings We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time. Conclusions/Significance Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.


PLOS ONE | 2012

General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

Klaus Birkhofer; Ingo Schöning; Fabian Alt; Nadine Herold; Bernhard Klarner; Mark Maraun; Sven Marhan; Yvonne Oelmann; Tesfaye Wubet; Andrey Yurkov; Dominik Begerow; Doreen Berner; François Buscot; Rolf Daniel; Tim Diekötter; Roswitha B. Ehnes; Georgia Erdmann; Christiane Fischer; Bärbel U. Foesel; Janine Groh; Jessica L. M. Gutknecht; Ellen Kandeler; Christa Lang; Gertrud Lohaus; Annabel Meyer; Heiko Nacke; Astrid Näther; Jörg Overmann; Andrea Polle; Melanie M. Pollierer

Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.


Philosophical Transactions of the Royal Society B | 2016

Ecological and socio-economic functions across tropical land use systems after rainforest conversion

Jochen Drescher; Katja Rembold; Kara Allen; Philip Beckschäfer; Damayanti Buchori; Yann Clough; Heiko Faust; Anas Miftah Fauzi; Dodo Gunawan; Dietrich Hertel; Bambang Irawan; I Nengah Surati Jaya; Bernhard Klarner; Christoph Kleinn; Alexander Knohl; Martyna M. Kotowska; Valentyna Krashevska; Vijesh V. Krishna; Christoph Leuschner; Wolfram Lorenz; Ana Meijide; Dian Melati; Miki Nomura; César Pérez-Cruzado; Matin Qaim; Iskandar Z. Siregar; Stefanie Steinebach; Aiyen Tjoa; Teja Tscharntke; Barbara Wick

Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.


Biology and Fertility of Soils | 2015

Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities

Valentyna Krashevska; Bernhard Klarner; Rahayu Widyastuti; Mark Maraun; Stefan Scheu

Focusing on Sumatra, a hotspot of tropical lowland rainforest transformation, we investigated effects of the conversion of rainforests into rubber agroforests (“jungle rubber”), intensive rubber, and oil palm plantations on the communities of litter and soil microorganisms and identified factors responsible for these changes. Litter basal respiration, microbial biomass, total bacterial phospholipid fatty acids (PLFAs), and fungal PLFAs did not vary significantly with rainforest conversion. In litter of converted ecosystems, the concentration of certain PLFAs including the Gram-negative bacteria marker PLFA cy17:0 and the Gram-positive bacteria marker PLFA i17:0 was reduced as compared to rainforest, whereas the concentration of the arbuscular mycorrhizal fungi (AMF) marker neutral lipid fatty acid (NLFA) 16:1ω5c increased. As indicated by redundancy analysis, litter pH and carbon concentration explained most of the variation in litter microbial community composition. In soil, microbial biomass did not vary significantly with rainforest conversion, whereas basal respiration declined. Total PLFAs and especially that of Gram-negative bacteria decreased, whereas PLFA i17:0 increased with rainforest conversion. The concentration of fungal PLFAs increased with rainforest conversion, whereas NLFA 16:1ω5c did not change significantly. Redundancy analysis indicated that soil pH explained most of the variation in soil microbial community composition. Overall, the data suggest that conversion of rainforests into production systems results in more pronounced changes in microbial community composition in soil as compared to litter. In particular, the response of fungi and bacteria was more pronounced in soil, while the response of AMF was more pronounced in litter. Notably, only certain bacterial markers but not those of saprotrophic fungi and AMF were detrimentally affected by rainforest conversion.


Nature Communications | 2016

Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes

Yann Clough; Vijesh V. Krishna; Marife D. Corre; Kevin Darras; Lisa H. Denmead; Ana Meijide; Stefan Moser; Oliver Musshoff; Stefanie Steinebach; Edzo Veldkamp; Kara Allen; Andrew David Barnes; Natalie Breidenbach; Ulrich Brose; Damayanti Buchori; Rolf Daniel; Reiner Finkeldey; Idham Sakti Harahap; Dietrich Hertel; A. Mareike Holtkamp; Elvira Hörandl; Bambang Irawan; I Nengah Surati Jaya; Malte Jochum; Bernhard Klarner; Alexander Knohl; Martyna M. Kotowska; Valentyna Krashevska; Holger Kreft; Syahrul Kurniawan

Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.


Ecology | 2014

Lack of energetic equivalence in forest soil invertebrates

Roswitha B. Ehnes; Melanie M. Pollierer; Georgia Erdmann; Bernhard Klarner; Bernhard Eitzinger; Christoph Digel; David Ott; Mark Maraun; Stefan Scheu; Ulrich Brose

Ecological communities consist of small abundant and large non-abundant species. The energetic equivalence rule is an often-observed pattern that could be explained by equal energy usage among abundant small organisms and non-abundant large organisms. To generate this pattern, metabolism (as an indicator of individual energy use) and abundance have to scale inversely with body mass, and cancel each other out. In contrast, the pattern referred to as biomass equivalence states that the biomass of all species in an area should be constant across the body-mass range. In this study, we investigated forest soil communities with respect to metabolism, abundance, population energy use, and biomass. We focused on four land-use types in three different landscape blocks (Biodiversity Exploratories). The soil samples contained 870 species across 12 phylogenetic groups. Our results indicated positive sublinear metabolic scaling and negative sublinear abundance scaling with species body mass. The relationships varied mainly due to differences among phylogenetic groups or feeding types, and only marginally due to land-use type. However, these scaling relationships were not exactly inverse to each other, resulting in increasing population energy use and biomass with increasing body mass for most combinations of phylogenetic group or feeding type with land-use type. Thus, our results are mostly inconsistent with the classic perception of energetic equivalence, and reject the biomass equivalence hypothesis while documenting a specific and nonrandom pattern of how abundance, energy use, and biomass are distributed across size classes. However, these patterns are consistent with two alternative predictions: the resource-thinning hypothesis, which states that abundance decreases with trophic level, and the allometric degree hypothesis, which states that population energy use should increase with population average body mass, due to correlations with the number of links of consumers and resources. Overall, our results suggest that a synthesis of food web structures with metabolic theory may be most promising for predicting natural patterns of abundance, biomass, and energy use.


The American Naturalist | 2017

Decreasing Stoichiometric Resource Quality Drives Compensatory Feeding across Trophic Levels in Tropical Litter Invertebrate Communities

Malte Jochum; Andrew D. Barnes; David Ott; Birgit Lang; Bernhard Klarner; Achmad Farajallah; Stefan Scheu; Ulrich Brose

Living organisms are constrained by both resource quantity and quality. Ecological stoichiometry offers important insights into how the elemental composition of resources affects their consumers. If resource quality decreases, consumers can respond by shifting their body stoichiometry, avoiding low-quality resources, or up-regulating feeding rates to maintain the supply of required elements while excreting excess carbon (i.e., compensatory feeding). We analyzed multitrophic consumer body stoichiometry, biomass, and feeding rates along a resource-quality gradient in the litter of tropical forest and rubber and oil-palm plantations. Specifically, we calculated macroinvertebrate feeding rates based on consumer metabolic demand and assimilation efficiency. Using linear mixed effects models, we assessed resource-quality effects on macroinvertebrate detritivore and predator communities. We did not detect shifts in consumer body stoichiometry or decreases in consumer biomass in response to declining resource quality, as indicated by increasing carbon-to-nitrogen ratios. However, across trophic levels, we found a strong indication of decreasing resource quality leading to increased consumer feeding rates through altered assimilation efficiency and community body size structure. Our study reveals the influence of resource quality on multitrophic consumer feeding rates and suggests compensatory feeding to be more common across consumer trophic levels than was formerly known.


PLOS ONE | 2016

Changes in Structure and Functioning of Protist (Testate Amoebae) Communities Due to Conversion of Lowland Rainforest into Rubber and Oil Palm Plantations

Valentyna Krashevska; Bernhard Klarner; Rahayu Widyastuti; Mark Maraun; Stefan Scheu

Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.


ZooKeys | 2015

Contributions to the knowledge of oribatid mites of Indonesia. 2. The genus Pergalumna (Galumnidae) with description of a new species and key to known species in the Oriental region (Acari, Oribatida).

Sergey G. Ermilov; Dorothee Sandmann; Bernhard Klarner; Rahaju Widyastuti; Stefan Scheu

Abstract A new species of oribatid mite of the genus Pergalumna (Oribatida, Galumnidae) is described from litter and soil materials in Sumatra, Indonesia. Pergalumna paraindistincta sp. n. is morphologically most similar to Pergalumna indistincta Ermilov & Anichkin, 2011, Pergalumna pertrichosa Mahunka, 1995 and Pergalumna sura Balogh, 1997; however, the new species differs from Pergalumna indistincta by the smaller body size, presence of long adanal setae ad1, and large, single median pore in females and males; from Pergalumna pertrichosa by the smaller body size, presence of three pairs of notogastral porose areas, elongated A1 and minute anal setae; from Pergalumna sura by the presence of strong adanal setae ad1, large, single median pore in females and males, and shorter bothridial setae. Furthermore, Pergalumna hawaiiensis hawaiiensis (Jacot, 1934) and Pergalumna panayensis Ermilov & Corpuz-Raros, 2015 are recorded for the first time in the Indonesian fauna. An identification key to the known species of Pergalumna in the Oriental region is given.


PLOS ONE | 2017

Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia)

Bernhard Klarner; Helge Winkelmann; Valentyna Krashevska; Mark Maraun; Rahayu Widyastuti; Stefan Scheu

Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world’s hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.

Collaboration


Dive into the Bernhard Klarner's collaboration.

Top Co-Authors

Avatar

Stefan Scheu

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Mark Maraun

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ulrich Brose

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

David Ott

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malte Jochum

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Lang

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Achmad Farajallah

Bogor Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge