Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentyna Krashevska is active.

Publication


Featured researches published by Valentyna Krashevska.


Philosophical Transactions of the Royal Society B | 2016

Ecological and socio-economic functions across tropical land use systems after rainforest conversion

Jochen Drescher; Katja Rembold; Kara Allen; Philip Beckschäfer; Damayanti Buchori; Yann Clough; Heiko Faust; Anas Miftah Fauzi; Dodo Gunawan; Dietrich Hertel; Bambang Irawan; I Nengah Surati Jaya; Bernhard Klarner; Christoph Kleinn; Alexander Knohl; Martyna M. Kotowska; Valentyna Krashevska; Vijesh V. Krishna; Christoph Leuschner; Wolfram Lorenz; Ana Meijide; Dian Melati; Miki Nomura; César Pérez-Cruzado; Matin Qaim; Iskandar Z. Siregar; Stefanie Steinebach; Aiyen Tjoa; Teja Tscharntke; Barbara Wick

Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.


Biology and Fertility of Soils | 2015

Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities

Valentyna Krashevska; Bernhard Klarner; Rahayu Widyastuti; Mark Maraun; Stefan Scheu

Focusing on Sumatra, a hotspot of tropical lowland rainforest transformation, we investigated effects of the conversion of rainforests into rubber agroforests (“jungle rubber”), intensive rubber, and oil palm plantations on the communities of litter and soil microorganisms and identified factors responsible for these changes. Litter basal respiration, microbial biomass, total bacterial phospholipid fatty acids (PLFAs), and fungal PLFAs did not vary significantly with rainforest conversion. In litter of converted ecosystems, the concentration of certain PLFAs including the Gram-negative bacteria marker PLFA cy17:0 and the Gram-positive bacteria marker PLFA i17:0 was reduced as compared to rainforest, whereas the concentration of the arbuscular mycorrhizal fungi (AMF) marker neutral lipid fatty acid (NLFA) 16:1ω5c increased. As indicated by redundancy analysis, litter pH and carbon concentration explained most of the variation in litter microbial community composition. In soil, microbial biomass did not vary significantly with rainforest conversion, whereas basal respiration declined. Total PLFAs and especially that of Gram-negative bacteria decreased, whereas PLFA i17:0 increased with rainforest conversion. The concentration of fungal PLFAs increased with rainforest conversion, whereas NLFA 16:1ω5c did not change significantly. Redundancy analysis indicated that soil pH explained most of the variation in soil microbial community composition. Overall, the data suggest that conversion of rainforests into production systems results in more pronounced changes in microbial community composition in soil as compared to litter. In particular, the response of fungi and bacteria was more pronounced in soil, while the response of AMF was more pronounced in litter. Notably, only certain bacterial markers but not those of saprotrophic fungi and AMF were detrimentally affected by rainforest conversion.


Nature Communications | 2016

Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes

Yann Clough; Vijesh V. Krishna; Marife D. Corre; Kevin Darras; Lisa H. Denmead; Ana Meijide; Stefan Moser; Oliver Musshoff; Stefanie Steinebach; Edzo Veldkamp; Kara Allen; Andrew David Barnes; Natalie Breidenbach; Ulrich Brose; Damayanti Buchori; Rolf Daniel; Reiner Finkeldey; Idham Sakti Harahap; Dietrich Hertel; A. Mareike Holtkamp; Elvira Hörandl; Bambang Irawan; I Nengah Surati Jaya; Malte Jochum; Bernhard Klarner; Alexander Knohl; Martyna M. Kotowska; Valentyna Krashevska; Holger Kreft; Syahrul Kurniawan

Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.


The ISME Journal | 2014

Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages.

Valentyna Krashevska; Dorothee Sandmann; Mark Maraun; Stefan Scheu

We investigated the response of soil microbial communities in tropical ecosystems to increased nutrient deposition, such as predicted by anthropogenic change scenarios. Moderate amounts of nitrogen and phosphorus and their combination were added along an altitudinal transect. We expected microorganisms and microbial grazers (testate amoebae) to significantly respond to nutrient additions with the effect increasing with increasing altitude and with duration of nutrient additions. Further, we expected nutrients to alter grazer–prey interrelationships. Indeed, nutrient additions strongly altered microbial biomass (MB) and community structure as well as the community structure of testate amoebae. The response of microorganisms varied with both altitude and duration of nutrient addition. The results indicate that microorganisms are generally limited by N, but saprotrophic fungi also by P. Also, arbuscular mycorrhizal fungi benefited from N and/or P addition. Parallel to MB, testate amoebae benefited from the addition of N but were detrimentally affected by P, with the addition of P negating the positive effect of N. Our data suggests that testate amoeba communities are predominantly structured by abiotic factors and by antagonistic interactions with other microorganisms, in particular mycorrhizal fungi, rather than by the availability of prey. Overall, the results suggest that the decomposer system of tropical montane rainforests significantly responds to even moderate changes in nutrient inputs with the potential to cause major ramifications of the whole ecosystem including litter decomposition and plant growth.


Frontiers in Microbiology | 2015

Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia).

Dominik Schneider; Martin Engelhaupt; Kara Allen; Syahrul Kurniawan; Valentyna Krashevska; Melanie Heinemann; Heiko Nacke; Marini Wijayanti; Anja Meryandini; Marife D. Corre; Stefan Scheu; Rolf Daniel

Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio, and extractable P content. Archaeal community composition and diversity were correlated to pH value, exchangeable Fe content, water content, and total N. The distribution of bacterial and archaeal taxa involved in biological N cycle indicated functional shifts of the cycle during conversion of rainforest to plantations.


PLOS ONE | 2016

Changes in Structure and Functioning of Protist (Testate Amoebae) Communities Due to Conversion of Lowland Rainforest into Rubber and Oil Palm Plantations

Valentyna Krashevska; Bernhard Klarner; Rahayu Widyastuti; Mark Maraun; Stefan Scheu

Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.


Fems Microbiology Reviews | 2018

Soil protists: a fertile frontier in soil biology research

Stefan Geisen; Edward A. D. Mitchell; Sina Adl; Michael Bonkowski; Micah Dunthorn; Flemming Ekelund; Leonardo D. Fernández; Alexandre Jousset; Valentyna Krashevska; David Singer; Frederick W. Spiegel; Julia Walochnik; Enrique Lara

Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.


PLOS ONE | 2017

Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia)

Bernhard Klarner; Helge Winkelmann; Valentyna Krashevska; Mark Maraun; Rahayu Widyastuti; Stefan Scheu

Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world’s hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.


Nature Communications | 2018

Carbon costs and benefits of Indonesian rainforest conversion to plantations

Thomas Guillaume; Martyna M. Kotowska; Dietrich Hertel; Alexander Knohl; Valentyna Krashevska; Kukuh Murtilaksono; Stefan Scheu; Yakov Kuzyakov

Land-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha−1, 159 Mg C ha−1, and 174 Mg C ha−1, respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles.Rainforest conversion to plantations driven by global demand for agricultural products generates high environmental costs. Here, the authors show that the high oil palm plantation production efficiency is associated with decreased carbon storage and slower organic matter cycling that affect ecosystem services.


Ecology and Evolution | 2017

Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration

Franca Marian; Dorothee Sandmann; Valentyna Krashevska; Mark Maraun; Stefan Scheu

Abstract We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site‐specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers.

Collaboration


Dive into the Valentyna Krashevska's collaboration.

Top Co-Authors

Avatar

Stefan Scheu

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Mark Maraun

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franca Marian

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Kara Allen

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge