Bernhard Steubing
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernhard Steubing.
International Journal of Life Cycle Assessment | 2016
Gregor Wernet; Christian Bauer; Bernhard Steubing; Jürgen Reinhard; Emilia Moreno-Ruiz; Bo Pedersen Weidema
PurposeGood background data are an important requirement in LCA. Practitioners generally make use of LCI databases for such data, and the ecoinvent database is the largest transparent unit-process LCI database worldwide. Since its first release in 2003, it has been continuously updated, and version 3 was published in 2013. The release of version 3 introduced several significant methodological and technological improvements, besides a large number of new and updated datasets. The aim was to expand the content of the database, set the foundation for a truly global database, support regionalized LCIA, offer multiple system models, allow for easier integration of data from different regions, and reduce maintenance efforts. This article describes the methodological developments.MethodsModeling choices and raw data were separated in version 3, which enables the application of different sets of modeling choices, or system models, to the same raw data with little effort. This includes one system model for Consequential LCA. Flow properties were added to all exchanges in the database, giving more information on the inventory and allowing a fast calculation of mass and other balances. With version 3.1, the database is generally water-balanced, and water use and consumption can be determined. Consumption mixes called market datasets were consistently added to the database, and global background data was added, often as an extrapolation from regional data.Results and discussionIn combination with hundreds of new unit processes from regions outside Europe, these changes lead to an improved modeling of global supply chains, and a more realistic distribution of impacts in regionalized LCIA. The new mixes also facilitate further regionalization due to the availability of background data for all regions.ConclusionsWith version 3, the ecoinvent database substantially expands the goals and scopes of LCA studies it can support. The new system models allow new, different studies to be performed. Global supply chains and market datasets significantly increase the relevance of the database outside of Europe, and regionalized LCA is supported by the data. Datasets are more transparent, include more information, and support, e.g., water balances. The developments also support easier collaboration with other database initiatives, as demonstrated by a first successful collaboration with a data project in Québec. Version 3 has set the foundation for expanding ecoinvent from a mostly regional into a truly global database and offers many new insights beyond the thousands of new and updated datasets it also introduced.
Journal of Environmental Management | 2015
Karin Höglmeier; Bernhard Steubing; Gabriele Weber-Blaschke; Klaus Richter
Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system.
Environmental Science & Technology | 2015
Niko Heeren; Christopher L. Mutel; Bernhard Steubing; York Ostermeyer; Holger Wallbaum; Stefanie Hellweg
The goal of this study was to identify drivers of environmental impact and quantify their influence on the environmental performance of wooden and massive residential and office buildings. We performed a life cycle assessment and used thermal simulation to quantify operational energy demand and to account for differences in thermal inertia of building mass. Twenty-eight input parameters, affecting operation, design, material, and exogenic building properties were sampled in a Monte Carlo analysis. To determine sensitivity, we calculated the correlation between each parameter and the resulting life cycle inventory and impact assessment scores. Parameters affecting operational energy demand and energy conversion are the most influential for the buildings total environmental performance. For climate change, electricity mix, ventilation rate, heating system, and construction material rank the highest. Thermal inertia results in an average 2-6% difference in heat demand. Nonrenewable cumulative energy demand of wooden buildings is 18% lower, compared to a massive variant. Total cumulative energy demand is comparable. The median climate change impact is 25% lower, including end-of-life material credits and 22% lower, when credits are excluded. The findings are valid for small offices and residential buildings in Switzerland and regions with similar building culture, construction material production, and climate.
Environmental Science & Technology | 2014
Dominik Saner; Carl Vadenbo; Bernhard Steubing; Stefanie Hellweg
This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipalitys buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions.
Journal of Industrial Ecology | 2015
Stefan Pauliuk; Guillaume Majeau-Bettez; Christopher L. Mutel; Bernhard Steubing; Konstantin Stadler
Industrial ecology (IE) is a maturing scientific discipline. The field is becoming more data and computation intensive, which requires IE researchers to develop scientific software to tackle novel research questions. We review the current state of software programming and use in our field and find challenges regarding transparency, reproducibility, reusability, and ease of collaboration. Our response to that problem is fourfold: First, we propose how existing general principles for the development of good scientific software could be implemented in IE and related fields. Second, we argue that collaborating on open source software could make IE research more productive and increase its quality, and we present guidelines for the development and distribution of such software. Third, we call for stricter requirements regarding general access to the source code used to produce research results and scientific claims published in the IE literature. Fourth, we describe a set of open source modules for standard IE modeling tasks that represent our first attempt at turning our recommendations into practice. We introduce a Python toolbox for IE that includes the life cycle assessment (LCA) framework Brightway2, the ecospold2matrix module that parses unallocated data in ecospold format, the pySUT and pymrio modules for building and analyzing multiregion input‐output models and supply and use tables, and the dynamic_stock_model class for dynamic stock modeling. Widespread use of open access software can, at the same time, increase quality, transparency, and reproducibility of IE research.
International Journal of Life Cycle Assessment | 2016
Bernhard Steubing; Gregor Wernet; Jürgen Reinhard; Christian Bauer; Emilia Moreno-Ruiz
PurposeVersion 3 of ecoinvent includes more data, new modeling principles, and, for the first time, several system models: the “Allocation, cut-off by classification” (Cut-off) system model, which replicates the modeling principles of version 2, and two newly introduced models called “Allocation at the point of substitution” (APOS) and “Consequential” (Wernet et al. 2016). The aim of this paper is to analyze and explain the differences in life cycle impact assessment (LCIA) results of the v3.1 Cut-off system model in comparison to v2.2 as well as the APOS and Consequential system models.MethodsIn order to do this, functionally equivalent datasets were matched across database versions and LCIA results compared to each other. In addition, the contribution of specific sectors was analyzed. The importance of new and updated data as well as new modeling principles is illustrated through examples.Results and discussionDifferences were observed in between all database versions using the impact assessment methods Global Warming Potential (GWP100a), ReCiPe Endpoint (H/A), and Ecological Scarcity 2006 (ES’06). The highest differences were found for the comparison of the v3.1 Cut-off and v2.2. At average, LCIA results increased by 6, 8, and 17xa0% and showed a median dataset deviation of 13, 13, and 21xa0% for GWP, ReCiPe, and ES’06, respectively. These changes are due to the simultaneous update and addition of new data as well as through the introduction of global coverage and spatially consistent linking of activities throughout the database. As a consequence, supply chains are now globally better represented than in version 2 and lead, e.g., in the electricity sector, to more realistic life cycle inventory (LCI) background data. LCIA results of the Cut-off and APOS models are similar and differ mainly for recycling materials and wastes. In contrast, LCIA results of the Consequential version differ notably from the attributional system models, which is to be expected due to fundamentally different modeling principles. The use of marginal instead of average suppliers in markets, i.e., consumption mixes, is the main driver for result differences.ConclusionsLCIA results continue to change as LCI databases evolve, which is confirmed by a historical comparison of v1.3 and v2.2. Version 3 features more up-to-date background data as well as global supply chains and should, therefore, be used instead of previous versions. Continuous efforts will be required to decrease the contribution of Rest-of-the-World (RoW) productions and thereby improve the global coverage of supply chains.
Journal of Industrial Ecology | 2017
Florian Suter; Bernhard Steubing; Stefanie Hellweg
Summary nSustainable use of wood may contribute to coping with energy and material resource challenges. The goal of this study is to increase knowledge of the environmental effects of wood use by analyzing the complete value chain of all wooden goods produced or consumed in Switzerland. We start from a material flow analysis of current wood use in Switzerland. Environmental impacts related to the material flows are evaluated using life cycle assessment–based environmental indicators. Regarding climate change, we find an overall average benefit of 0.5 tonnes carbon dioxide equivalent per cubic meter of wood used. High environmental benefits are often achieved when replacing conventional heat production and energy-consuming materials in construction and furniture. The environmental performance of wood is, however, highly dependent on its use and environmental indicators. To exploit the mitigation potential of wood, we recommend to (1) apply its use where there are high substitution benefits like the replacement of fossil fuels for energy or energy-intensive building materials, (2) take appropriate measures to minimize negative effects like particulate matter emissions, and (3) keep a systems perspective to weigh effects like substitution and cascading against each other in a comprehensive manner. The results can provide guidance for further in-depth studies and prospective analyses of wood-use scenarios.
International Journal of Life Cycle Assessment | 2016
Bernhard Steubing; Christopher L. Mutel; Florian Suter; Stefanie Hellweg
PurposeThe environmental performance of products or services is often a result of a number of key decisions that shape their life cycles (e.g., techology choices). This paper introduces a modular LCA approach that is capable of reducing the effort involved in performing scenario analyses and optimization when several key choices along a product’s value chain lead to many alternative life cycles.MethodsThe main idea is that the value chain of a product can be divided into interconnected but exchangeable modules, which together represent a full life cycle. A module is comprised of unit processes from the practitioner’s LCI database. The inputs, outputs, and system boundaries of each module can be tailored to the context of the studied system. Alternatives arise whenever multiple modules produce substitutable products. Unlike in conventional LCI databases, no copies are necessary to represent the same process with different inputs. A module-product matrix is used to store this information. It can be used as a basis for an automated scenario analysis of all alternatives or as an input to an optimization model.Results and discussionOur approach is illustrated in two case studies: (1) Passenger car fuel choices are modeled by 15 modules representing 33 alternative value chains for diesel, petrol, natural gas and electric cars. The automated comparison of LCA results indicates that electric mobility is often the preferable option from a climate perspective, but impacts depend strongly on the electricity source. (2) A dynamic optimization model including stocks is built from eight modules to analyze the optimal use of wood for material and energy applications. Results indicate that although direct substitution benefits are higher for energy applications, cascading use of wood can maximize environmental performance over the entire life cycle.ConclusionsThe modular LCA approach permits an efficient modeling and comparison of alternative product life cycles, enabling practitioners to focus on key decisions. It can be applied to exploit a potential that is hidden in LCI databases, which is that they contain many specific inventories but not all useful combinations in the context of scenario analyses. The user-defined level of abstraction that is introduced through modules can be helpful in the communication of LCA results. The modular approach also facilitates the integration of LCA and optimization as well as other industrial ecology methods. An open source software is provided to enable others to applyxa0and further develop our implementation of a modular LCA approach.
Journal of Industrial Ecology | 2018
Andreas Froemelt; Manuela Mauchle; Bernhard Steubing; Stefanie Hellweg
Summary nThe present article aims to determine the current carbon footprint (CF) of Zernez, a Swiss mountain village, and to identify reduction potentials of greenhouse gas (GHG) emissions. For this purpose, material and energy flows were assessed mainly based on detailed household surveys, interviews, and energy bills, but also by means of other information sources, for example, national statistics, traffic censuses, and literature values. To set up the GHG balance, special attention was paid to the consistent definition of system boundaries by adopting two fundamentally different perspectives: purely geographical accounting (PGA) and the consumption-based footprint (CBF) method. Each of these two perspectives total approximately 10xa0tonnes of carbon dioxide equivalents per capita per year. The PGA revealed that 70% of the direct emissions in Zernez are caused by agricultural activities, whereas no consumption area dominated the consumption-induced CF. For the identification of targeted measures, both perspectives were considered in a complementary manner. The building stock and its underlying energy supply system showed a GHG reduction potential of 80%. The building sector was thus detected as a reasonable first step for the municipality to adopt GHG mitigation strategies. In the case of Zernez, building-stock-related measures are predicted to decrease the current CF by 13% (CBF) and 17% (PGA), respectively.
Resources Conservation and Recycling | 2018
Jonas Mehr; Carl Vadenbo; Bernhard Steubing; Stefanie Hellweg