Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Suter is active.

Publication


Featured researches published by Bernhard Suter.


Molecular and Cellular Biology | 2008

Chaperone Control of the Activity and Specificity of the Histone H3 Acetyltransferase Rtt109

Jeffrey Fillingham; Judith Recht; Andrea C. Silva; Bernhard Suter; Andrew Emili; Igor Stagljar; Nevan J. Krogan; C. David Allis; Michael-Christopher Keogh; Jack Greenblatt

ABSTRACT Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Δ suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109s H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.


Current Opinion in Biotechnology | 2008

Two-hybrid technologies in proteomics research.

Bernhard Suter; Saranya Kittanakom; Igor Stagljar

Given that protein-protein interactions (PPIs) regulate nearly every living process; the exploration of global and pathway-specific protein interaction networks is expected to have major implications in the understanding of diseases and for drug discovery. Consequently, the development and application of methodologies that address physical associations among proteins is of major importance in todays proteomics research. The most widely and successfully used methodology to assess PPIs is the yeast two-hybrid system (YTH). Here we present an overview on the current applications of YTH and variant technologies in yeast and mammalian systems. Two-hybrid-based methods will not only continue to have a dominant role in the assessment of protein interactomes but will also become important in the development of novel compounds that target protein interaction interfaces for therapeutic intervention.


BioTechniques | 2006

Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond

Bernhard Suter; Daniel Auerbach; Igor Stagljar

Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.


Molecular Cell | 2008

The Glc7 Phosphatase Subunit of the Cleavage and Polyadenylation Factor Is Essential for Transcription Termination on snoRNA Genes

Eduard Nedea; Demet Nalbant; Daniel Xia; Nathaniel T. Theoharis; Bernhard Suter; Charles J. Richardson; Kelly Tatchell; Thomas Kislinger; Jack Greenblatt; Peter L. Nagy

Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.


BMC Biology | 2007

Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

Bernhard Suter; Oxana Pogoutse; Xinghua Guo; Nevan J. Krogan; Peter N. Lewis; Jack Greenblatt; Jasper Rine; Andrew Emili

BackgroundHistone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4.ResultsHere, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC). While mutational inactivation of the histone acetyltransferase (HAT) gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2) exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork.ConclusionWe have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p). The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.


BioTechniques | 2008

Interactive proteomics: what lies ahead?

Bernhard Suter; Saranya Kittanakom; Igor Stagljar

Interactive proteomics addresses the physical associations among proteins and establishes global, disease-, and pathway-specific protein interaction networks. The inherent chemical and structural diversity of proteins, their different expression levels, and their distinct subcellular localizations pose unique challenges for the exploration of these networks, necessitating the use of a variety of innovative and ingenious approaches. Consequently, recent years have seen exciting developments in protein interaction mapping and the establishment of very large interaction networks, especially in model organisms. In the near future, attention will shift to the establishment of interaction networks in humans and their application in drug discovery and understanding of diseases. In this review, we present an impressive toolbox of different technologies that we expect to be crucial for interactive proteomics in the coming years.


BioTechniques | 2008

Exploring protein phosphorylation in response to DNA damage using differentially tagged yeast arrays.

Bernhard Suter; Christopher Graham; Igor Stagljar

Two collections of chromosomally tagged yeast Saccharomyces cerevisiae strains were previously designed to detect protein-protein interactions via the Cross-and-Capture system. Here, we used these strain collections in a different application to screen for proteins that are phosphorylated in response to DNA damage by electrophoretic shift analysis. Modification of a number of proteins that are known targets for checkpoint kinases was confirmed this way. Furthermore, we identified the mismatch repair protein Pms1 as a novel target for phosphorylation in the response to DNA damage and replication fork arrest. Genetic analysis revealed that this phosphorylation is dependent on checkpoint activation by ATM and ATR (yeast Mec1p and Tel1p) kinase. Hence, we demonstrated that the Cross-and-Capture system could be efficiently used to detect posttranslational modifications that modulate and control protein function in eukaryotic cells.


Science | 2004

Global Mapping of the Yeast Genetic Interaction Network

Amy Hin Yan Tong; Guillaume Lesage; Gary D. Bader; Huiming Ding; Hong Xu; Xiaofeng Xin; James W. Young; Gabriel F. Berriz; Renee L. Brost; Michael Chang; Yiqun Chen; Xin Cheng; Gordon Chua; Helena Friesen; Debra S. Goldberg; Jennifer Haynes; Christine Humphries; Grace He; Shamiza Hussein; Lizhu Ke; Nevan J. Krogan; Zhijian Li; Joshua N. Levinson; Hong Lu; Patrice Ménard; Christella Munyana; Ainslie B. Parsons; Owen Ryan; Raffi Tonikian; Tania M. Roberts


Genetics | 2004

The Origin Recognition Complex Links Replication, Sister Chromatid Cohesion and Transcriptional Silencing in Saccharomyces cerevisiae

Bernhard Suter; Amy Hin Yan Tong; Michael Chang; Lisa Yu; Grant W. Brown; Charles Boone; Jasper Rine


Fems Yeast Research | 2005

A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae

Peter Laun; Stefanie Jarolim; Eva Herker; Ping Liang; Jianxin Wang; Martin Weinberger; Debra T. Burhans; Bernhard Suter; Frank Madeo; William C. Burhans; Michael Breitenbach

Collaboration


Dive into the Bernhard Suter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxin Wang

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge