Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Fillingham is active.

Publication


Featured researches published by Jeffrey Fillingham.


Nature | 2007

Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map

Sean R. Collins; Kyle M. Miller; Nancy L. Maas; Assen Roguev; Jeffrey Fillingham; Clement S. Chu; Maya Schuldiner; Marinella Gebbia; Judith Recht; Michael Shales; Huiming Ding; Hong Xu; Junhong Han; Kristin Ingvarsdottir; Benjamin Cheng; Brenda Andrews; Charles Boone; Shelley L. Berger; Phil Hieter; Zhiguo Zhang; Grant W. Brown; C. James Ingles; Andrew Emili; C. David Allis; David P. Toczyski; Jonathan S. Weissman; Jack Greenblatt; Nevan J. Krogan

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein–protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein–protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Nature | 2006

A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery

Michael Christopher Keogh; Jung Ae Kim; Michael Downey; Jeffrey Fillingham; Dipanjan Chowdhury; Jacob C. Harrison; Megumi Onishi; Nira Datta; Sarah Galicia; Andrew Emili; Judy Lieberman; Xuetong Shen; Stephen Buratowski; James E. Haber; Daniel Durocher; Jack Greenblatt; Nevan J. Krogan

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create γH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating γH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of γH2AX in vivo and efficiently dephosphorylates γH2AX in vitro. γH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets γH2AX after its displacement from DNA. The dephosphorylation of γH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.


Molecular and Cellular Biology | 2008

Chaperone Control of the Activity and Specificity of the Histone H3 Acetyltransferase Rtt109

Jeffrey Fillingham; Judith Recht; Andrea C. Silva; Bernhard Suter; Andrew Emili; Igor Stagljar; Nevan J. Krogan; C. David Allis; Michael-Christopher Keogh; Jack Greenblatt

ABSTRACT Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Δ suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109s H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.


Nature Structural & Molecular Biology | 2010

The program for processing newly synthesized histones H3.1 and H4

Eric I. Campos; Jeffrey Fillingham; Guohong Li; Haiyan Zheng; Philipp Voigt; Wei-Hung W Kuo; Harshika Seepany; Zhonghua Gao; Loren A Day; Jack Greenblatt; Danny Reinberg

The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone post-translational modifications. To define the events by which naive pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the full gamut of histone H3.1–containing complexes from human cytoplasmic fractions and identified their associated histone post-translational modifications. Through reconstitution assays, biophysical analyses and live cell manipulations, we describe in detail this series of events, namely the assembly of H3–H4 dimers, the acetylation of histones by the HAT1 holoenzyme and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.

Karen Zhou; Wei Hung William Kuo; Jeffrey Fillingham; Jack Greenblatt

Elongation by RNA polymerase II (RNAPII) is a finely regulated process in which many elongation factors contribute to gene regulation. Among these factors are the polymerase-associated factor (PAF) complex, which associates with RNAPII, and several cyclin-dependent kinases, including positive transcription elongation factor b (P-TEFb) in humans and BUR kinase (Bur1–Bur2) and C-terminal domain (CTD) kinase 1 (CTDK1) in Saccharomyces cerevisiae. An important target of P-TEFb and CTDK1, but not BUR kinase, is the CTD of the Rpb1 subunit of RNAPII. Although the essential BUR kinase phosphorylates Rad6, which is required for histone H2B ubiquitination on K123, Rad6 is not essential, leaving a critical substrate(s) of BUR kinase unidentified. Here we show that BUR kinase is important for the phosphorylation in vivo of Spt5, a subunit of the essential yeast RNAPII elongation factor Spt4/Spt5, whose human orthologue is DRB sensitivity-inducing factor. BUR kinase can also phosphorylate the C-terminal region (CTR) of Spt5 in vitro. Like BUR kinase, the Spt5 CTR is important for promoting elongation by RNAPII and recruiting the PAF complex to transcribed regions. Also like BUR kinase and the PAF complex, the Spt5 CTR is important for histone H2B K123 monoubiquitination and histone H3 K4 and K36 trimethylation during transcription elongation. Our results suggest that the Spt5 CTR, which contains 15 repeats of a hexapeptide whose consensus sequence is S[T/A]WGG[A/Q], is a substrate of BUR kinase and a platform for the association of proteins that promote both transcription elongation and histone modification in transcribed regions.


Molecular Cell | 2009

Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression

Jeffrey Fillingham; Pinay Kainth; Jean-Philippe Lambert; Harm van Bakel; Kyle Tsui; Lourdes Peña-Castillo; Corey Nislow; Daniel Figeys; Timothy R. Hughes; Jack Greenblatt; Brenda Andrews

We describe a fluorescent reporter system that exploits the functional genomic tools available in budding yeast to systematically assess consequences of genetic perturbations on gene expression. We used our Reporter-Synthetic Genetic Array (R-SGA) method to screen for regulators of core histone gene expression. We discovered that the histone chaperone Rtt106 functions in a pathway with two other chaperones, Asf1 and the HIR complex, to create a repressive chromatin structure at core histone promoters. We found that activation of histone (HTA1) gene expression involves both relief of Rtt106-mediated repression by the activity of the histone acetyltransferase Rtt109 and restriction of Rtt106 to the promoter region by the bromodomain-containing protein Yta7. We propose that the maintenance of Asf1/HIR/Rtt106-mediated repressive chromatin domains is the primary mechanism of cell-cycle regulation of histone promoters. Our data suggest that this pathway may represent a chromatin regulatory mechanism that is broadly used across the genome.


Nature Structural & Molecular Biology | 2009

An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe

Hyun-Soo Kim; Vincent Vanoosthuyse; Jeffrey Fillingham; Assen Roguev; Stephen Watt; Thomas Kislinger; Alex Treyer; Laura Rocco Carpenter; Christopher S Bennett; Andrew Emili; Jack Greenblatt; Kevin G. Hardwick; Nevan J. Krogan; Jürg Bähler; Michael-Christopher Keogh

Histone variant H2A.Z has a conserved role in genome stability, although it remains unclear how this is mediated. Here we demonstrate that the fission yeast Swr1 ATPase inserts H2A.Z (Pht1) into chromatin and Kat5 acetyltransferase (Mst1) acetylates it. Deletion or an unacetylatable mutation of Pht1 leads to genome instability, primarily caused by chromosome entanglement and breakage at anaphase. This leads to the loss of telomere-proximal markers, though telomere protection and repeat length are unaffected by the absence of Pht1. Strikingly, the chromosome entanglement in pht1Δ anaphase cells can be rescued by forcing chromosome condensation before anaphase onset. We show that the condensin complex, required for the maintenance of anaphase chromosome condensation, prematurely dissociates from chromatin in the absence of Pht1. This and other findings suggest an important role for H2A.Z in the architecture of anaphase chromosomes.


Molecular Systems Biology | 2010

Defining the budding yeast chromatin-associated interactome

Jean-Philippe Lambert; Jeffrey Fillingham; Mojgan Siahbazi; Jack Greenblatt; Kristin Baetz; Daniel Figeys

We previously reported a novel affinity purification (AP) method termed modified chromatin immunopurification (mChIP), which permits selective enrichment of DNA‐bound proteins along with their associated protein network. In this study, we report a large‐scale study of the protein network of 102 chromatin‐related proteins from budding yeast that were analyzed by mChIP coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage as compared with classical AP methodology for ∼75% of the baits tested. Furthermore, mChIP successfully identified novel binding partners for many lower abundance transcription factors that previously failed using conventional AP methodologies. mChIP was also used to perform targeted studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.


Journal of Biological Chemistry | 2012

The Replication-independent Histone H3-H4 Chaperones HIR, ASF1, and RTT106 Co-operate to Maintain Promoter Fidelity

Andrea C. Silva; Xiaomeng Xu; Hyun-Soo Kim; Jeffrey Fillingham; Thomas Kislinger; Thomas A. Mennella; Michael-Christopher Keogh

Background: Transcription is disruptive to chromatin structure and can expose cryptic promoters. Results: We identify those factors that might regulate cryptic transcription from within inactive and transcribed locations. Conclusion: Nucleosome shielding prevents cryptic transcription, and replication-independent histone replacement is co-operatively mediated by three H3-H4 chaperones. Significance: Understanding how cryptic transcription is regulated and lost histones replaced is of fundamental importance. RNA polymerase II initiates from low complexity sequences so cells must reliably distinguish “real” from “cryptic” promoters and maintain fidelity to the former. Further, this must be performed under a range of conditions, including those found within inactive and highly transcribed regions. Here, we used genome-scale screening to identify those factors that regulate the use of a specific cryptic promoter and how this is influenced by the degree of transcription over the element. We show that promoter fidelity is most reliant on histone gene transactivators (Spt10, Spt21) and H3-H4 chaperones (Asf1, HIR complex) from the replication-independent deposition pathway. Mutations of Rtt106 that abrogate its interactions with H3-H4 or dsDNA permit extensive cryptic transcription comparable with replication-independent deposition factor deletions. We propose that nucleosome shielding is the primary means to maintain promoter fidelity, and histone replacement is most efficiently mediated in yeast cells by a HIR/Asf1/H3-H4/Rtt106 pathway.


Genes & Development | 2011

Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein

Christoph F. Kurat; Jean-Philippe Lambert; Dewald van Dyk; Kyle Tsui; Harm van Bakel; Supipi Kaluarachchi; Helena Friesen; Pinay Kainth; Corey Nislow; Daniel Figeys; Jeffrey Fillingham; Brenda Andrews

The cell cycle-regulated expression of core histone genes is required for DNA replication and proper cell cycle progression in eukaryotic cells. Although some factors involved in histone gene transcription are known, the molecular mechanisms that ensure proper induction of histone gene expression during S phase remain enigmatic. Here we demonstrate that S-phase transcription of the model histone gene HTA1 in yeast is regulated by a novel attach-release mechanism involving phosphorylation of the conserved chromatin boundary protein Yta7 by both cyclin-dependent kinase 1 (Cdk1) and casein kinase 2 (CK2). Outside S phase, integrity of the AAA-ATPase domain is required for Yta7 boundary function, as defined by correct positioning of the histone chaperone Rtt106 and the chromatin remodeling complex RSC. Conversely, in S phase, Yta7 is hyperphosphorylated, causing its release from HTA1 chromatin and productive transcription. Most importantly, abrogation of Yta7 phosphorylation results in constitutive attachment of Yta7 to HTA1 chromatin, preventing efficient transcription post-recruitment of RNA polymerase II (RNAPII). Our study identified the chromatin boundary protein Yta7 as a key regulator that links S-phase kinases with RNAPII function at cell cycle-regulated histone gene promoters.

Collaboration


Dive into the Jeffrey Fillingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge