Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berthold Göttgens is active.

Publication


Featured researches published by Berthold Göttgens.


Cell Stem Cell | 2010

Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators

Nicola K. Wilson; Samuel D. Foster; Xiaonan Wang; Kathy Knezevic; Judith Schütte; Polynikis Kaimakis; Paulina M. Chilarska; Sarah Kinston; Willem H. Ouwehand; Elaine Dzierzak; John E. Pimanda; Marella de Bruijn; Berthold Göttgens

Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.


Nature | 2009

JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin

Mark A. Dawson; Andrew J. Bannister; Berthold Göttgens; Samuel D. Foster; Till Bartke; Anthony R. Green; Tony Kouzarides

Activation of Janus kinase 2 (JAK2) by chromosomal translocations or point mutations is a frequent event in haematological malignancies. JAK2 is a non-receptor tyrosine kinase that regulates several cellular processes by inducing cytoplasmic signalling cascades. Here we show that human JAK2 is present in the nucleus of haematopoietic cells and directly phosphorylates Tyr 41 (Y41) on histone H3. Heterochromatin protein 1α (HP1α), but not HP1β, specifically binds to this region of H3 through its chromo-shadow domain. Phosphorylation of H3Y41 by JAK2 prevents this binding. Inhibition of JAK2 activity in human leukaemic cells decreases both the expression of the haematopoietic oncogene lmo2 and the phosphorylation of H3Y41 at its promoter, while simultaneously increasing the binding of HP1α at the same site. These results identify a previously unrecognized nuclear role for JAK2 in the phosphorylation of H3Y41 and reveal a direct mechanistic link between two genes, jak2 and lmo2, involved in normal haematopoiesis and leukaemia.


The EMBO Journal | 1998

The SCL gene specifies haemangioblast development from early mesoderm

Martin Gering; A.R.F. Rodaway; Berthold Göttgens; Roger K. Patient; Anthony R. Green

The SCL gene encodes a basic helix–loop–helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co‐expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.


Cell Stem Cell | 2012

Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal

Graziano Martello; Toshimi Sugimoto; Evangelia Diamanti; Anagha Joshi; Rebecca Hannah; Satoshi Ohtsuka; Berthold Göttgens; Hitoshi Niwa; Austin Smith

Summary Inhibition of glycogen synthase kinase-3 (Gsk3) supports mouse embryonic stem cells (ESCs) by modulating Tcf3, but the critical targets downstream of Tcf3 are unclear. We analyzed the intersection between genome localization and transcriptome data sets to identify genes repressed by Tcf3. Among these, manipulations of Esrrb gave distinctive phenotypes in functional assays. Knockdown and knockout eliminated response to Gsk3 inhibition, causing extinction of pluripotency markers and loss of colony forming capability. Conversely, forced expression phenocopied Gsk3 inhibition or Tcf3 deletion by suppressing differentiation and sustaining self-renewal. Thus the nuclear receptor Esrrb is necessary and sufficient to mediate self-renewal downstream of Gsk3 inhibition. Leukaemia inhibitory factor (LIF) regulates ESCs through Stat3, independently of Gsk3 inhibition. Consistent with parallel operation, ESCs in LIF accommodated Esrrb deletion and remained pluripotent. These findings highlight a key role for Esrrb in regulating the naive pluripotent state and illustrate compensation among the core pluripotency factors.


The EMBO Journal | 2002

Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors

Berthold Göttgens; Aristotelis Nastos; Sarah Kinston; Sandie Piltz; Eric Delabesse; Maureen L. Stanley; María José Sánchez; Aldo Ciau-Uitz; Roger Patient; Anthony R. Green

Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best‐characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix–loop–helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transcriptional hierarchy responsible for HSC formation by characterizing an SCL 3′ enhancer that targets expression to HSCs and endothelium and their bipotential precursors, the haemangioblast. We have identified three critical motifs, which are essential for enhancer function and bind GATA‐2, Fli‐1 and Elf‐1 in vivo. Our results suggest that these transcription factors are key components of an enhanceosome responsible for activating SCL transcription and establishing the transcriptional programme required for HSC formation.


Cell Stem Cell | 2014

Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal

Deqiang Sun; Min Luo; Mira Jeong; Benjamin Rodriguez; Zheng Xia; Rebecca Hannah; Hui Wang; Thuc M. Le; Kym F. Faull; Rui Chen; Hongcang Gu; Christoph Bock; Alexander Meissner; Berthold Göttgens; Gretchen J. Darlington; Wei Li; Margaret A. Goodell

To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-β signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development

John E. Pimanda; Katrin Ottersbach; Kathy Knezevic; Sarah Kinston; Wan Y I Chan; Nicola K. Wilson; Josette Renée Landry; Andrew Wood; Anja Kolb-Kokocinski; Anthony R. Green; David Tannahill; Georges Lacaud; Valerie Kouskoff; Berthold Göttgens

Conservation of the vertebrate body plan has been attributed to the evolutionary stability of gene-regulatory networks (GRNs). We describe a regulatory circuit made up of Gata2, Fli1, and Scl/Tal1 and their enhancers, Gata2-3, Fli1+12, and Scl+19, that operates during specification of hematopoiesis in the mouse embryo. We show that the Fli1+12 enhancer, like the Gata2-3 and Scl+19 enhancers, targets hematopoietic stem cells (HSCs) and relies on a combination of Ets, Gata, and E-Box motifs. We show that the Gata2-3 enhancer also uses a similar cluster of motifs and that Gata2, Fli1, and Scl are expressed in embryonic day-11.5 dorsal aorta where HSCs originate and in fetal liver where they multiply. The three HSC enhancers in these tissues and in ES cell-derived hemangioblast equivalents are bound by each of these transcription factors (TFs) and form a fully connected triad that constitutes a previously undescribed example of both this network motif in mammalian development and a GRN kernel operating during the specification of a mammalian stem cell.


Nature Biotechnology | 2000

Analysis of vertebrate SCL loci identifies conserved enhancers

Berthold Göttgens; Linda M. Barton; James Gilbert; Anthony J. Bench; María José Sánchez; Sabine Bahn; Shailesh Mistry; Darren Grafham; Amanda McMurray; Mark Vaudin; Enrique Amaya; David R. Bentley; Anthony R. Green

The SCL gene encodes a highly conserved bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis. We have sequenced and analyzed 320 kb of genomic DNA composing the SCL loci from human, mouse, and chicken. Long-range sequence comparisons demonstrated multiple peaks of human/mouse homology, a subset of which corresponded precisely with known SCL enhancers. Comparisons between mammalian and chicken sequences identified some, but not all, SCL enhancers. Moreover, one peak of human/mouse homology (+23 region), which did not correspond to a known enhancer, showed significant homology to an analogous region of the chicken SCL locus. A transgenic Xenopus reporter assay was established and demonstrated that the +23 region contained a new neural enhancer. This combination of long-range comparative sequence analysis with a high-throughput transgenic bioassay provides a powerful strategy for identifying and characterizing developmentally important enhancers.


Developmental Cell | 2011

Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

Marloes R. Tijssen; Ana Cvejic; Anagha Joshi; Rebecca Hannah; Rita Ferreira; Ariel Forrai; Dana C. Bellissimo; S. Helen Oram; Peter A. Smethurst; Nicola K. Wilson; Xiaonan Wang; Katrin Ottersbach; Derek L. Stemple; Anthony R. Green; Willem H. Ouwehand; Berthold Göttgens

Summary Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes.


Nature Cell Biology | 2013

Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

Victoria Moignard; Iain C. Macaulay; Gemma Swiers; Florian Buettner; Judith Schütte; Fernando J. Calero-Nieto; Sarah Kinston; Anagha Joshi; Rebecca Hannah; Fabian J. Theis; Sten Eirik W. Jacobsen; Marella de Bruijn; Berthold Göttgens

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

Collaboration


Dive into the Berthold Göttgens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Pimanda

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kathy Knezevic

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge