Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando J. Calero-Nieto is active.

Publication


Featured researches published by Fernando J. Calero-Nieto.


Nature Cell Biology | 2013

Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

Victoria Moignard; Iain C. Macaulay; Gemma Swiers; Florian Buettner; Judith Schütte; Fernando J. Calero-Nieto; Sarah Kinston; Anagha Joshi; Rebecca Hannah; Fabian J. Theis; Sten Eirik W. Jacobsen; Marella de Bruijn; Berthold Göttgens

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.


Cell Stem Cell | 2015

Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations

Nicola K. Wilson; David G. Kent; Florian Buettner; Mona Shehata; Iain C. Macaulay; Fernando J. Calero-Nieto; Manuel Sánchez Castillo; Caroline Anna Oedekoven; Evangelia Diamanti; Reiner Schulte; Chris P. Ponting; Thierry Voet; Carlos Caldas; John Stingl; Anthony R. Green; Fabian J. Theis; Berthold Göttgens

Summary Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.


Blood | 2009

The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development

Nicola K. Wilson; Diego Miranda-Saavedra; Sarah Kinston; Nicolas Bonadies; Samuel D. Foster; Fernando J. Calero-Nieto; Mark A. Dawson; Ian J. Donaldson; Stephanie Dumon; Jonathan Frampton; Rekin’s Janky; Xiao-Hong Sun; Sarah A. Teichmann; Andrew J. Bannister; Berthold Göttgens

The basic helix-loop-helix transcription factor Scl/Tal1 controls the development and subsequent differentiation of hematopoietic stem cells (HSCs). However, because few Scl target genes have been validated to date, the underlying mechanisms have remained largely unknown. In this study, we have used ChIP-Seq technology (coupling chromatin immunoprecipitation with deep sequencing) to generate a genome-wide catalog of Scl-binding events in a stem/progenitor cell line, followed by validation using primary fetal liver cells and comprehensive transgenic mouse assays. Transgenic analysis provided in vivo validation of multiple new direct Scl target genes and allowed us to reconstruct an in vivo validated network consisting of 17 factors and their respective regulatory elements. By coupling ChIP-Seq in model cell lines with in vivo transgenic validation and sophisticated bioinformatic analysis, we have identified a widely applicable strategy for the reconstruction of stem cell regulatory networks in which biologic material is otherwise limiting. Moreover, in addition to revealing multiple previously unrecognized links to known HSC regulators, as well as novel links to genes not previously implicated in HSC function, comprehensive transgenic analysis of regulatory elements provided substantial new insights into the transcriptional control of several important hematopoietic regulators, including Cbfa2t3h/Eto2, Cebpe, Nfe2, Zfpm1/Fog1, Erg, Mafk, Gfi1b, and Myb.


Cell Stem Cell | 2015

Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions

Eric M. Pietras; Damien Reynaud; Yoon-A. Kang; Daniel E. Carlin; Fernando J. Calero-Nieto; Andrew D. Leavitt; Joshua M. Stuart; Berthold Göttgens; Emmanuelle Passegué

Despite great advances in understanding the mechanisms underlying blood production, lineage specification at the level of multipotent progenitors (MPPs) remains poorly understood. Here, we show that MPP2 and MPP3 are distinct myeloid-biased MPP subsets that work together with lymphoid-primed MPP4 cells to control blood production. We find that all MPPs are produced in parallel by hematopoietic stem cells (HSCs), but with different kinetics and at variable levels depending on hematopoietic demands. We also show that the normally rare myeloid-biased MPPs are transiently overproduced by HSCs in regenerating conditions, hence supporting myeloid amplification to rebuild the hematopoietic system. This shift is accompanied by a reduction in self-renewal activity in regenerating HSCs and reprogramming of MPP4 fate toward the myeloid lineage. Our results support a dynamic model of blood development in which HSCs convey lineage specification through independent production of distinct lineage-biased MPP subsets that, in turn, support lineage expansion and differentiation.


Leukemia | 2014

BET protein inhibition shows efficacy against JAK2V617F driven neoplasms

Bs Wyspiańska; Andrew J. Bannister; Isaia Barbieri; Jyoti Nangalia; Anna L. Godfrey; Fernando J. Calero-Nieto; Samuel Robson; I Rioja; Juan Li; M Wiese; Ester Cannizzaro; Mark A. Dawson; Brian J. P. Huntly; Rab K. Prinjha; Anthony R. Green; Berthold Göttgens; Tony Kouzarides

Small molecule inhibition of the BET family of proteins, which bind acetylated lysines within histones, has been shown to have a marked therapeutic benefit in pre-clinical models of mixed lineage leukemia (MLL) fusion protein-driven leukemias. Here, we report that I-BET151, a highly specific BET family bromodomain inhibitor, leads to growth inhibition in a human erythroleukemic (HEL) cell line as well as in erythroid precursors isolated from polycythemia vera patients. One of the genes most highly downregulated by I-BET151 was LMO2, an important oncogenic regulator of hematopoietic stem cell development and erythropoiesis. We previously reported that LMO2 transcription is dependent upon Janus kinase 2 (JAK2) kinase activity in HEL cells. Here, we show that the transcriptional changes induced by a JAK2 inhibitor (TG101209) and I-BET151 in HEL cells are significantly over-lapping, suggesting a common pathway of action. We generated JAK2 inhibitor resistant HEL cells and showed that these retain sensitivity to I-BET151. These data highlight I-BET151 as a potential alternative treatment against myeloproliferative neoplasms driven by constitutively active JAK2 kinase.


The EMBO Journal | 2014

Key regulators control distinct transcriptional programmes in blood progenitor and mast cells

Fernando J. Calero-Nieto; Felicia Sl Ng; Nicola K. Wilson; Rebecca Hannah; Victoria Moignard; Ana I Leal‐Cervantes; Isabel Jimenez-Madrid; Evangelia Diamanti; Lorenz Wernisch; Berthold Göttgens

Despite major advances in the generation of genome‐wide binding maps, the mechanisms by which transcription factors (TFs) regulate cell type identity have remained largely obscure. Through comparative analysis of 10 key haematopoietic TFs in both mast cells and blood progenitors, we demonstrate that the largely cell type‐specific binding profiles are not opportunistic, but instead contribute to cell type‐specific transcriptional control, because (i) mathematical modelling of differential binding of shared TFs can explain differential gene expression, (ii) consensus binding sites are important for cell type‐specific binding and (iii) knock‐down of blood stem cell regulators in mast cells reveals mast cell‐specific genes as direct targets. Finally, we show that the known mast cell regulators Mitf and c‐fos likely contribute to the global reorganisation of TF binding profiles. Taken together therefore, our study elucidates how key regulatory TFs contribute to transcriptional programmes in several distinct mammalian cell types.


Molecular and Cellular Biology | 2009

A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes.

Sarion R. Bowers; Fabio Mirabella; Fernando J. Calero-Nieto; Stephanie Valeaux; Euan W. Baxter; Matthias Merkenschlager; Peter N. Cockerill

ABSTRACT The human interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating-factor (GM-CSF, or CSF2) gene cluster arose by duplication of an ancestral gene. Although just 10 kb apart and responsive to the same signals, the IL-3 and GM-CSF genes are nevertheless regulated independently by separate, tissue-specific enhancers. To understand the differential regulation of the IL-3 and GM-CSF genes we have investigated a cluster of three ubiquitous DNase I-hypersensitive sites (DHSs) located between the two genes. We found that each site contains a conserved CTCF consensus sequence, binds CTCF, and recruits the cohesin subunit Rad21 in vivo. The positioning of these sites relative to the IL-3 and GM-CSF genes and their respective enhancers is conserved between human and mouse, suggesting a functional role in the organization of the locus. We found that these sites effectively block functional interactions between the GM-CSF enhancer and either the IL-3 or the GM-CSF promoter in reporter gene assays. These data argue that the regulation of the IL-3 and the GM-CSF promoters depends on the positions of their enhancers relative to the conserved CTCF/cohesin-binding sites. We suggest that one important role of these sites is to enable the independent regulation of the IL-3 and GM-CSF genes.


Blood | 2012

The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice

Cyrus Khandanpour; Joseph Krongold; Judith Schütte; F. Bouwman; Lothar Vassen; Marie-Claude Gaudreau; Riyan Chen; Fernando J. Calero-Nieto; Evangelia Diamanti; Rebecca Hannah; Sara E. Meyer; H.L. Grimes; B.A. van der Reijden; Joop H. Jansen; C.V. Patel; Justine K. Peeters; Bob Löwenberg; Ulrich Dührsen; Berthold Göttgens; Tarik Möröy

The coding single nucleotide polymorphism GFI136N in the human gene growth factor independence 1 (GFI1) is present in 3%-7% of whites and increases the risk for acute myeloid leukemia (AML) by 60%. We show here that GFI136N, in contrast to GFI136S, lacks the ability to bind to the Gfi1 target gene that encodes the leukemia-associated transcription factor Hoxa9 and fails to initiate histone modifications that regulate HoxA9 expression. Consistent with this, AML patients heterozygous for the GFI136N variant show increased HOXA9 expression compared with normal controls. Using ChipSeq, we demonstrate that GFI136N specific epigenetic changes are also present in other genes involved in the development of AML. Moreover, granulomonocytic progenitors, a bone marrow subset from which AML can arise in humans and mice, show a proliferative expansion in the presence of the GFI136N variant. In addition, granulomonocytic progenitors carrying the GFI136N variant allele have altered gene expression patterns and differ in their ability to grow after transplantation. Finally, GFI136N can accelerate a K-RAS driven fatal myeloproliferative disease in mice. Our data suggest that the presence of a GFI136N variant allele induces a preleukemic state in myeloid precursors by deregulating the expression of Hoxa9 and other AML-related genes.


eLife | 2016

An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

Judith Schütte; Huange Wang; Stella Antoniou; Andrew Jarratt; Nicola K. Wilson; Joey Riepsaame; Fernando J. Calero-Nieto; Victoria Moignard; Silvia Basilico; Sarah Kinston; Rebecca Hannah; Mun Chiang Chan; Sylvia T. Nurnberg; Willem H. Ouwehand; Nicola Bonzanni; Marella de Bruijn; Berthold Göttgens

Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001


Nature | 2017

Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis

Aurelie Herault; Mikhail Binnewies; Stephanie Leong; Fernando J. Calero-Nieto; Si Yi Zhang; Yoon-A. Kang; Xiaonan Wang; Eric M. Pietras; S. Haihua Chu; Keegan Barry-Holson; Scott A. Armstrong; Berthold Göttgens; Emmanuelle Passegué

Although many aspects of blood production are well understood, the spatial organization of myeloid differentiation in the bone marrow remains unknown. Here we use imaging to track granulocyte/macrophage progenitor (GMP) behaviour in mice during emergency and leukaemic myelopoiesis. In the steady state, we find individual GMPs scattered throughout the bone marrow. During regeneration, we observe expanding GMP patches forming defined GMP clusters, which, in turn, locally differentiate into granulocytes. The timed release of important bone marrow niche signals (SCF, IL-1β, G-CSF, TGFβ and CXCL4) and activation of an inducible Irf8 and β-catenin progenitor self-renewal network control the transient formation of regenerating GMP clusters. In leukaemia, we show that GMP clusters are constantly produced owing to persistent activation of the self-renewal network and a lack of termination cytokines that normally restore haematopoietic stem-cell quiescence. Our results uncover a previously unrecognized dynamic behaviour of GMPs in situ, which tunes emergency myelopoiesis and is hijacked in leukaemia.

Collaboration


Dive into the Fernando J. Calero-Nieto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wajid Jawaid

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge