Bertram Kuch
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bertram Kuch.
Environment International | 2003
Roland Weber; Bertram Kuch
The widespread use of brominated flame-retarded products in the last two decades has resulted in an increasing presence of bromine in thermal processes such as waste combustion and accidental fires. Brominated and brominated-chlorinated dibenzodioxins and dibenzofurans (PBDDs/PBDFs, PXDDs/PXDFs) are micropollutants of concern arising from such processes. The present review aims to evaluate the relevance of these compound classes in actual thermal processes. Four categories of thermal processes are discussed in this respect according to their potential for PBDD/PBDF and PXDD/PXDF generation: thermal stress, pyrolysis/gasification, insufficient combustion conditions and controlled combustion conditions. Under thermal stress situations, as they may occur in production or recycling processes, PBDDs/PBDFs precursors like polybrominated diphenylethers (PBDE) can have a relevant potential for PBDD/PBDF formation via a simple elimination. Under insufficient combustion conditions as they are present in, e.g. accidental fires and uncontrolled burning as well as gasification/pyrolysis processes, considerable amounts of PBDDs/PBDFs can be formed from BFRs, preferably via the precursor pathway. In contrast, under controlled combustion conditions, BFRs and PBDDs/PBDFs can be destroyed with high efficiency. The relevance of de novo synthesis of PXDDs/PXDFs is discussed for this condition. Providing a basis for the understanding of PXDD/PXDF formation in actual thermal processes, the present paper also summarises the formation pathways of brominated and brominated-chlorinated PXDDs/PXDFs from brominated flame retardants (BFRs) investigated during laboratory thermolysis experiments. Relevant mechanistic steps for PBDD/PBDF formation from brominated precursors are discussed including elimination reactions, condensation steps and debromination/hydrogenation reactions. In addition, chlorination/bromination and halogen exchange reactions are briefly discussed with respect for their relevance on the final distribution of PBDDs/PBDFs, mixed chlorinated PXDDs/PXDFs and PCDDs/PCDFs resulting from thermal processes.
Air Quality, Atmosphere & Health | 2010
Md. Aynul Bari; Günter Baumbach; Bertram Kuch; Günter Scheffknecht
An important source of polycyclic aromatic hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. The target of this study was to investigate the particle-phase PAH composition of ambient samples in order to assess the influence of wood combustion on air quality in residential areas. PM10 samples (particulate matter <10 μm) were collected during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene in an ultrasonic bath and subsequently analysed by gas chromatography–mass spectrometry. Twenty-one PAH compounds were detected and quantified. The PAH fingerprints of different wood combustion emissions were found in significant amounts in ambient samples and high correlations between total PAHs and other wood smoke tracers were found, indicating the dominant influence of wood combustion on air quality in residential areas. Carcinogenic PAHs were detected in high concentrations and contributed 49% of the total PAHs in the ambient air. To assess the health risk, we investigated the exposure profile of individual PAHs. The findings suggest that attention should be focused on using the best combustion technology available to reduce emissions from wood-fired heating during the winter in residential areas.
Environmental Earth Sciences | 2013
Hermann Rügner; Marc Schwientek; Barbara Beckingham; Bertram Kuch; Peter Grathwohl
Transport of hydrophobic organic pollutants in rivers is mainly coupled to transport of suspended particles. Turbidity measurements are often used to assess the amount of suspended solids in water. In this study, a monitoring campaign is presented where the total concentration of polycyclic aromatic hydrocarbons (PAHs), the amount of total suspended solids (TSS), and turbidity was measured in water samples from five neighboring catchments in southwest Germany. Linear correlations of turbidity and TSS were obtained which were in close agreement to the literature data. From linear regressions of turbidity versus total PAH concentrations in water, mean concentrations of PAH on suspended particles could be calculated and these varied by catchment. These values furthermore comprise a robust measure of the average sediment quality in a given catchment. Since in the catchments investigated in this study, PAH concentrations on suspended particles were stable over a large turbidity range (1–114 Nephelometric Turbidity Units), turbidity could be used as a proxy for total PAHs and likely other highly hydrophobic organic pollutants in river water if the associated correlations are established. Based on that, online monitoring of turbidity (e.g., by optical backscattering sensors) seems very promising to determine annual pollutant fluxes.
Journal of Hazardous Materials | 2015
Claudia Lange; Bertram Kuch; Jörg W. Metzger
The polycyclic musks tonalide(®) (acetyl hexamethyltetraline=1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone, AHTN), galaxolide(®) (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyrane, HHCB) and the degradation product HHCB-lactone were determined in water samples and brown trouts (Salmo trutta fario) of the river Ammer, a small catchment in the state of Baden-Württemberg, south-west Germany. The Ammer receives the effluent discharge of two municipal wastewater treatment plants (WWTPs) with 90,000 population equivalents. The wastewater contributes 14% of the total discharge of the river (average 1.0m(3)/s). Water samples were collected monthly at 12 sampling points from June 2010 to May 2011. Downstream the WWTPs the median concentrations of HHCB, AHTN and HHCB-lactone were 0.26 μg/L, 0.06 μg/L and 1.0 μg/L, respectively. The effluent of the WWTPs was identified as main source of the synthetic musks in the surface water. The ratio of HHCB-lactone/HHCB showed significant seasonal variations indicating the influence of the water temperature on the degradation of HHCB in the surface water. A total of 251 trout was caught in two campaigns in October 2010 at 12 sampling points. The median concentrations of HHCB and AHTN in the trouts downstream the WWTPs significantly increased to 10.8μg/g lipid weight (LW) and 3.7 μg/g LW, respectively.
Environmental Pollution | 2013
Marc Schwientek; Hermann Rügner; Barbara Beckingham; Bertram Kuch; Peter Grathwohl
Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles (C(sus)) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that C(sus) is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles.
Environmental Sciences Europe | 2013
Rita Triebskorn; Klaus Amler; Ludek Blaha; Claudia Gallert; Sabrina Giebner; Hans Güde; Anja Henneberg; Stefanie Hess; Harald Hetzenauer; Klaus Jedele; Ralph-Michael Jung; Sven Kneipp; Heinz-R. Köhler; Bertram Kuch; Claudia Lange; Herbert Löffler; Diana Maier; Jörg W. Metzger; Michael Müller; Jörg Oehlmann; Raphaela Osterauer; Katharina Peschke; Jürgen Raizner; Peter Rey; Magali Rault; Doreen Richter; Frank Sacher; Marco Scheurer; Jutta Schneider-Rapp; Merav Seifan
The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities.
PLOS ONE | 2014
Anja Henneberg; Katrin Bender; Ludek Blaha; Sabrina Giebner; Bertram Kuch; Heinz-R. Köhler; Diana Maier; Jörg Oehlmann; Doreen Richter; Marco Scheurer; Ulrike Schulte-Oehlmann; Agnes Sieratowicz; Simone Ziebart; Rita Triebskorn
Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively.
Chemosphere | 2014
Claudia Lange; Bertram Kuch; Jörg W. Metzger
The purpose of this study was to ascertain whether different kinds of underarm deodorants commercially available in Germany might contain substances with estrogenic potential which after use enter the aquatic environment via wastewater. Twenty five deodorants produced by ten different manufacturers in the form of sprays, roll-ons and sticks were investigated using an in vitro-test system (E-Screen assay) for the determination of estrogenic activity based on the human breast cancer cell line MCF-7. Seven out of ten spray deodorant samples showed a quantifiable estrogenic activity. In the case of the sticks and roll-ons it was only one out of six and one out of nine, respectively. The 17β-estradiol equivalent concentrations (EEQs) of the samples ranged from 0.1 ng g(-1) to 9 ng g(-1) deodorant. Spray deodorant samples showed the highest activities in the E-Screen assay compared to the stick and roll-on deodorants. In order to identify substances possibly contributing to the observed biological activity the samples were additionally analyzed by GC/MS. The obtained results of this non-target screening led to the selection of 62 single substances present in the deodorants which for their part were analyzed by E-Screen assay. Eight of these single substances, all of them fragrances, showed estrogenic effects with estradiol equivalence factors (EEFs) similar to parabens, a group of 4-hydroxybenzoic acid esters commonly used as preservatives in personal care products, which are known to have a slight estrogenic effect. Thus, these fragrances are obviously responsible to a substantial degree for the observed estrogenic activity of the deodorants.
International Journal of Environmental Research and Public Health | 2018
Eduard Rott; Bertram Kuch; Claudia Lange; Philipp Richter; Amélie Kugele; Ralf Minke
Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L.
Science of The Total Environment | 2018
J. Rodríguez-Chueca; E. Laski; C. García-Cañibano; M.J. Martín de Vidales; Á. Encinas; Bertram Kuch; Javier Marugán
The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H2O2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H2O2/UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H2O2/UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m3·order). Even H2O2/UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H2O2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone.