Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertram L. Jacobs is active.

Publication


Featured researches published by Bertram L. Jacobs.


Journal of Virology | 2001

Both Carboxy- and Amino-Terminal Domains of the Vaccinia Virus Interferon Resistance Gene, E3L, Are Required for Pathogenesis in a Mouse Model

Teresa Brandt; Bertram L. Jacobs

ABSTRACT The vaccinia virus (VV) E3L gene is responsible for providing interferon (IFN) resistance and a broad host range to VV in cell culture. The E3L gene product contains two distinct domains. A conserved carboxy-terminal domain, which is required for the IFN resistance and broad host range of the virus, has been shown to bind double-stranded RNA (dsRNA) and inhibit the antiviral dsRNA-dependent protein kinase, PKR. The amino-terminal domain, while conserved among orthopoxviruses, is dispensable in cell culture. To study the role of E3L in whole-animal infections, WR strain VV recombinants either lacking E3L (VVΔE3L) or expressing an amino-terminal (VVE3LΔ83N) or carboxy-terminal (VVE3LΔ26C) truncation of E3L were constructed. Whereas wild-type VV had a 50% lethal dose of approximately 104 PFU after intranasal infection, and elicited severe weight loss and morbidity, VVΔE3L was apathogenic, leading to no death, weight loss, or morbidity. VVΔE3L was also apathogenic after intracranial injection. Although the amino-terminal domain of E3L is dispensable for infection of cells in culture, both the amino- and carboxy-terminal domains of E3L were required for full pathogenesis in intranasal infections. These results demonstrate that the entire E3L gene is required for pathogenesis in the mouse model.


Journal of Virology | 2002

Blockade of Interferon Induction and Action by the E3L Double-Stranded RNA Binding Proteins of Vaccinia Virus

Ying Xiang; Richard C. Condit; Sangeetha Vijaysri; Bertram L. Jacobs; Bryan R. G. Williams; Robert H. Silverman

ABSTRACT The vaccinia virus E3L gene encodes two double-stranded RNA binding proteins that promote viral growth and pathogenesis through suppression of innate immunity. To explore how E3L enables vaccinia virus to evade the interferon system, cells and mice deficient in the principal interferon-regulated antiviral enzymes, PKR and RNase L, were infected with wild-type vaccinia virus and strains of vaccinia virus from which E3L had been deleted (E3L-deleted strains). While wild-type virus was unaffected by RNase L and PKR, virus lacking E3L replicated only in the deficient cells. Nevertheless, E3L-deleted virus failed to replicate to high titers or to cause significant morbidity or mortality in triply deficient mice lacking RNase L, PKR, and Mx1. To investigate the underlying cause, we determined the effect of E3L on interferon regulatory factor 3 (IRF3), a transcription factor required for viral induction of subtypes of type I interferons. Results showed that IRF3 activation and interferon-β induction occurred after infections with E3L-deleted virus but not with wild-type virus. These findings demonstrate that E3L plays an essential role in the pathogenesis of vaccinia virus by blocking the interferon system at multiple levels. Furthermore, our results indicate the existence of an interferon-mediated antipoxvirus pathway that operates independently of PKR, Mx1, or the 2-5A/RNase L system.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A role for Z-DNA binding in vaccinia virus pathogenesis.

Yang-Gyun Kim; Maneesha Muralinath; Teresa Brandt; Matthew Pearcy; Kevin Hauns; Ky Lowenhaupt; Bertram L. Jacobs; Alexander Rich

The N-terminal domain of the E3L protein of vaccinia virus has sequence similarity to a family of Z-DNA binding proteins of defined three-dimensional structure and it is necessary for pathogenicity in mice. When other Z-DNA-binding domains are substituted for the similar E3L domain, the virus retains its lethality after intracranial inoculation. Mutations decreasing Z-DNA binding in the chimera correlate with decreases in viral pathogenicity, as do analogous mutations in wild-type E3L. A chimeric virus incorporating a related protein that does not bind Z-DNA is not pathogenic, but a mutation that creates Z-DNA binding makes a lethal virus. The ability to bind the Z conformation is thus essential to E3L activity. This finding may allow the design of a class of antiviral agents, including agents against variola (smallpox), which has an almost identical E3L.


Journal of Virology | 2002

Subversion of Cell Signaling Pathways by Hepatitis C Virus Nonstructural 5A Protein via Interaction with Grb2 and P85 Phosphatidylinositol 3-Kinase

Yupeng He; Haruhisa Nakao; Seng Lai Tan; Stephen J. Polyak; Petra Neddermann; Sangeetha Vijaysri; Bertram L. Jacobs; Michael G. Katze

ABSTRACT Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis.


Journal of Biomolecular Structure & Dynamics | 1992

Atomic Force Microscopy Imaging of Double Stranded DNA and RNA

Yuri L. Lyubchenko; L. S. Shlyakhtenko; Rodney E. Harrington; Bertram L. Jacobs; P.I. Oden; Stuart Lindsay

A procedure for imaging long DNA and double stranded RNA (dsRNA) molecules using Atomic Force Microscopy (AFM) is described. Stable binding of double stranded DNA molecules to the flat mica surface is achieved by chemical modification of freshly cleaved mica under mild conditions with 3-aminopropyltriethoxy silane. We have obtained striking images of intact lambda DNA, Hind III restriction fragments of lambda DNA and dsRNA from reovirus. These images are stable under repeated scanning and measured contour lengths are accurate to within a few percent. This procedure leads to strong DNA attachment, allowing imaging under water. The widths of the DNA images lie in the range of 20 to 80nm for data obtained in air with commercially available probes. The work demonstrates that AFM is now a routine tool for simple measurements such as a length distribution. Improvement of substrate and sample preparation methods are needed to achieve yet higher resolution.


Antiviral Research | 2009

Vaccinia virus vaccines: Past, present and future

Bertram L. Jacobs; Jeffrey O. Langland; Karen V. Kibler; Karen L. Denzler; Stacy D. White; Susan A. Holechek; Shukmei Wong; Trung Huynh; Carole R. Baskin

Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.


Virus Genes | 1996

Host-range restriction of vaccinia virus E3L-specific deletion mutants

Elizabeth Beattie; Elizabeth B. Kauffman; Hector Martinez; Marion E. Perkus; Bertram L. Jacobs; Enzo Paoletti; James Tartaglia

The vaccinia virus (VV) E3L gene product functions as a dsRNA binding protein that is involved in conferring an interferon-resistant phenotype upon the virus. Studies with a vaccinia virus (VV) E3L- deletion mutant (vP1080) have also demonstrated that the E3L gene product is critical for productive replication on certain cell substrates. While E3L was found to be nonessential for replication in chick embryo fibroblasts (CEFs), virus specifically deleted of E3L was found to be replication deficient in Vero, HeLa, and murine L929 cells. Further, the temporal block in replication appears to differ in these cell systems, as evidenced by the observed timing of protein synthesis inhibition. In Vero cells infected with the VV E3L- mutant, there was no detectable protein synthesis after 2 hr post-infection, whereas in L929 cells normal protein patterns were observed even at late times post-infection. Expression of a heterologous dsRNA binding protein, the reovirus σ3 protein, by the E3L- mutant virus restored near wild-type growth characteristics, suggesting the critical nature for regulating dsRNA levels in VV-infected cells.


Molecular Ecology | 2004

Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread

James K. Jancovich; Elizabeth W. Davidson; N. Parameswaran; Jinghe Mao; V. G. Chinchar; James P. Collins; Bertram L. Jacobs; Andrew Storfer

Our understanding of origins and spread of emerging infectious diseases has increased dramatically because of recent applications of phylogenetic theory. Iridoviruses are emerging pathogens that cause global amphibian epizootics, including tiger salamander (Ambystoma tigrinum) die‐offs throughout western North America. To explain phylogeographical relationships and potential causes for emergence of western North American salamander iridovirus strains, we sequenced major capsid protein and DNA methyltransferase genes, as well as two noncoding regions from 18 geographically widespread isolates. Phylogenetic analyses of sequence data from the capsid protein gene showed shallow genetic divergence (< 1%) among salamander iridovirus strains and monophyly relative to available fish, reptile, and other amphibian iridovirus strains from the genus Ranavirus, suggesting a single introduction and radiation. Analysis of capsid protein sequences also provided support for a closer relationship of tiger salamander virus strains to those isolated from sport fish (e.g. rainbow trout) than other amphibian isolates. Despite monophyly based on capsid protein sequences, there was low genetic divergence among all strains (< 1.1%) based on a supergene analysis of the capsid protein and the two noncoding regions. These analyses also showed polyphyly of strains from Arizona and Colorado, suggesting recent spread. Nested clade analyses indicated both range expansion and long‐distance colonization in clades containing virus strains isolated from bait salamanders and the Indiana University axolotl (Ambystoma mexicanum) colony. Human enhancement of viral movement is a mechanism consistent with these results. These findings suggest North American salamander ranaviruses cause emerging disease, as evidenced by apparent recent spread over a broad geographical area.


Virology | 1991

Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase

Julia C. Watson; Hwai Wen Chang; Bertram L. Jacobs

The work described in this article identifies a vaccinia virus-encoded protein that may be involved in inhibition of the interferon-induced, double-stranded RNA-dependent protein kinase. Extracts prepared from vaccinia virus (WR strain)-infected cells contain an inhibitor of this kinase. Inhibition was reduced in extracts from which dsRNA-binding proteins had been removed by preadsorption to poly(rI).poly(rC)-Sepharose, suggesting that a dsRNA-binding protein may be involved in kinase inhibition. A single major virus-specific polypeptide of Mr = 25,000 (p25) bound to the poly(rI).poly(rC)-Sepharose. p25 was synthesized in a coupled in vitro transcription/translation system programmed with vaccinia cores, indicating that it is a vaccinia-encoded protein. Synthesis of p25 was detected at early times, by 2 hr post infection, peaked at 5 hours postinfection, and decreased during the late phase of virus replication. In the presence of cytosine arabinoside p25 synthesis did not decrease at late times postinfection. Kinase inhibitory activity accumulated with similar kinetics to p25, both in the presence and absence of cytosine arabinoside. Kinase inhibitory activity copurified with p25, through gel filtration, and Cibacron blue-affinity chromatography. Removal of p25 by precipitation with antiserum to p25 decreased kinase inhibitory activity in extracts prepared from vaccinia virus-infected cells. These results suggest that p25 may be necessary for the specific kinase inhibitory activity detected in vaccinia virus-infected cells.


Journal of Virology | 2010

Evidence for Multiple Recent Host Species Shifts among the Ranaviruses (Family Iridoviridae)

James K. Jancovich; Michel Brémont; Jeffrey W. Touchman; Bertram L. Jacobs

ABSTRACT Members of the genus Ranavirus (family Iridoviridae) have been recognized as major viral pathogens of cold-blooded vertebrates. Ranaviruses have been associated with amphibians, fish, and reptiles. At this time, the relationships between ranavirus species are still unclear. Previous studies suggested that ranaviruses from salamanders are more closely related to ranaviruses from fish than they are to ranaviruses from other amphibians, such as frogs. Therefore, to gain a better understanding of the relationships among ranavirus isolates, the genome of epizootic hematopoietic necrosis virus (EHNV), an Australian fish pathogen, was sequenced. Our findings suggest that the ancestral ranavirus was a fish virus and that several recent host shifts have taken place, with subsequent speciation of viruses in their new hosts. The data suggesting several recent host shifts among ranavirus species increase concern that these pathogens of cold-blooded vertebrates may have the capacity to cross numerous poikilothermic species barriers and the potential to cause devastating disease in their new hosts.

Collaboration


Dive into the Bertram L. Jacobs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trung Huynh

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariano Esteban

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Perdiguero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Brandt

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge