Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trung Huynh is active.

Publication


Featured researches published by Trung Huynh.


Antiviral Research | 2009

Vaccinia virus vaccines: Past, present and future

Bertram L. Jacobs; Jeffrey O. Langland; Karen V. Kibler; Karen L. Denzler; Stacy D. White; Susan A. Holechek; Shukmei Wong; Trung Huynh; Carole R. Baskin

Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.


PLOS ONE | 2011

Improved NYVAC-Based Vaccine Vectors

Karen V. Kibler; Carmen Elena Gómez; Beatriz Perdiguero; Shukmei Wong; Trung Huynh; Susan A. Holechek; William D. Arndt; Victoria Jiménez; Rubén González-Sanz; Karen L. Denzler; Elias K. Haddad; Ralf Wagner; Rafick Pierre Sekaly; James Tartaglia; Giuseppe Pantaleo; Bertram L. Jacobs; Mariano Esteban

While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.


Vaccine | 2011

Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques.

Karen L. Denzler; Tahar Babas; Amy Rippeon; Trung Huynh; Nobuko Fukushima; Lowrey Rhodes; Peter Silvera; Bertram L. Jacobs

The New York City Board of Health (NYCBH) vaccinia virus is the currently licensed vaccine for use in the US against smallpox. The vaccine under investigation in this study has been attenuated by deletion of the innate immune evasion gene, E3L, and shown to be protective in homologous virus mouse challenge and heterologous virus mouse and rabbit challenge models. In this study we compared NYCBH deleted for the E3L gene (NYCBHΔE3L) to NYCBH for the ability to induce phosphorylation of proinflammatory signaling proteins and the ability to protect cynomolgus macaques from heterologous challenge with monkeypox virus (MPXV). NYCBHΔE3L induced phosphorylation of PKR and eIF2α as well as p38, SAPK/JNK, and IRF3 which can lead to induction of proinflammatory gene transcription. Vaccination of macaques with two doses of NYCBHΔE3L resulted in negligible pock formation at the site of scarification in comparison to vaccination using a single dose of NYCBH, but still elicited neutralizing antibodies and protected 75% of the animals from mortality after challenge with MPXV. However, NYCBHΔE3L-vaccinated animals developed a high number of secondary skin lesions and blood viral load similar to that seen in unvaccinated controls. The NYCBHΔE3L-vaccinated animals that survived MPXV challenge were able to show resolution of blood viral load, a decrease in number of skin lesions, and an improved clinical score by three weeks post challenge. These results suggest that although the highly attenuated NYCBHΔE3L allows proinflammatory signal transduction to occur, it does not provide full protection against monkeypox challenge.


Journal of Virology | 2015

Evasion of the innate immune type I interferon system by monkeypox virus

William D. Arndt; Samantha Cotsmire; Kelly Trainor; Heather Harrington; Kevin Hauns; Karen V. Kibler; Trung Huynh; Bertram L. Jacobs

ABSTRACT The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


Vaccine | 2011

The attenuated NYCBH vaccinia virus deleted for the immune evasion gene, E3L, completely protects mice against heterologous challenge with ectromelia virus

Karen L. Denzler; Jill Schriewer; Scott Parker; Chas Werner; Hollyce Hartzler; Ed Hembrador; Trung Huynh; Susan A. Holechek; R. M. L. Buller; Bertram L. Jacobs

The New York City Board of Health (NYCBH) vaccinia virus (VACV) vaccine strain was deleted for the immune evasion gene, E3L, and tested for its pathogenicity and ability to protect mice from heterologous challenge with ectromelia virus (ECTV). NYCBHΔE3L was found to be highly attenuated for pathogenicity in a newborn mouse model and showed a similar attenuated phenotype as the NYVAC strain of vaccinia virus. Scarification with one or two doses of the attenuated NYCBHΔE3L was able to protect mice equally as well as NYCBH from death, weight loss, and viral spread to visceral organs. A single dose of NYCBHΔE3L resulted in low poxvirus-specific antibodies, and a second dose increased levels of poxvirus-specific antibodies to a level similar to that seen in animals vaccinated with a single dose of NYCBH. However, similar neutralizing antibody titers were observed following one or two doses of NYCBHΔE3L or NYCBH. Thus, NYCBHΔE3L shows potential as a candidate for a safer human smallpox vaccine since it protects mice from challenge with a heterologous poxvirus.


Virology | 2016

Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, IBT, than vaccinia virus.

William D. Arndt; Stacy D. White; Brian P. Johnson; Trung Huynh; Jeffrey Liao; Heather Harrington; Samantha Cotsmire; Karen V. Kibler; Jeffrey O. Langland; Bertram L. Jacobs

Monkeypox virus (MPXV) infection fails to activate the host anti-viral protein, PKR, despite lacking a full-length homologue of the vaccinia virus (VACV) PKR inhibitor, E3. Since PKR can be activated by dsRNA produced during a viral infection, we have analyzed the accumulation of dsRNA in MPXV-infected cells. MPXV infection led to less accumulation of dsRNA than VACV infection. Because in VACV infections accumulation of abnormally low amounts of dsRNA is associated with mutations that lead to resistance to the anti-poxvirus drug isatin beta-thiosemicarbazone (IBT), we investigated the effects of treatment of MPXV-infected cells with IBT. MPXV infection was eight-fold more resistant to IBT than wild-type vaccinia virus (wtVACV). These results demonstrate that MPXV infection leads to the accumulation of less dsRNA than wtVACV, which in turn likely leads to a decreased capacity for activation of the dsRNA-dependent host enzyme, PKR.


Virology | 2017

Characterization of a PKR inhibitor from the pathogenic ranavirus, Ambystoma tigrinum virus, using a heterologous vaccinia virus system

Trung Huynh; James K. Jancovich; Latha Tripuraneni; Michael C. Heck; Jeffrey O. Langland; Bertram L. Jacobs

Ambystoma tigrinum virus (ATV) (family Iridoviridae, genus Ranavirus) was isolated from diseased tiger salamanders (Ambystoma tigrinum stebbinsi) from the San Rafael Valley in southern Arizona, USA in 1996. Genomic sequencing of ATV, as well as other members of the genus, identified an open reading frame that has homology to the eukaryotic translation initiation factor, eIF2α (ATV eIF2α homologue, vIF2αH). Therefore, we asked if the ATV vIF2αH could also inhibit PKR. To test this hypothesis, the ATV vIF2αH was cloned into vaccinia virus (VACV) in place of the well-characterized VACV PKR inhibitor, E3L. Recombinant VACV expressing ATV vIF2αH partially rescued deletion of the VACV E3L gene. Rescue coincided with rapid degradation of PKR in infected cells. These data suggest that the salamander virus, ATV, contains a novel gene that may counteract host defenses, and this gene product may be involved in the presentation of disease caused by this environmentally important pathogen.


Virology | 2015

Interaction between unrelated viruses during in vivo co-infection to limit pathology and immunity

Megan S. McAfee; Trung Huynh; John L. Johnson; Bertram L. Jacobs; Joseph N. Blattman

Great progress has been made in understanding immunity to viral infection. However, infection can occur in the context of co-infection by unrelated pathogens that modulate immune responses and/or disease. We have studied immunity and disease during co-infection with two unrelated viruses: Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV). ECTV infection can be a lethal in mice due in part to the blockade of Type I Interferons (IFN-I). We show that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, likely due to IFN-I induction by LCMV, as rescue is not observed in IFN-I receptor deficient mice. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and potentially biased toward effector-memory cell generation. Thus, we provide evidence for bi-directional effects of viral co-infection that modulate disease and immunity.


Evidence-based Complementary and Alternative Medicine | 2016

Characterization of the physiological response following in vivo administration of astragalus membranaceus

Karen L. Denzler; Jessica Moore; Heather Harrington; Kira Morrill; Trung Huynh; Bertram L. Jacobs; Robert Waters; Jeffrey O. Langland

The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8–12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γ and tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role of A. membranaceus in priming for a potential immune response as well as its effect on blood flow and wound healing.


Retrovirology | 2009

OA021-01. Construction and characterization of replication competent attenuated NYVAC-based vectors as potential HIV vaccines

Bertram L. Jacobs; Karen V. Kibler; Shukmei Wong; Trung Huynh; Susan A. Holechek; Karen L. Denzler; William D. Arndt; M Parrington; Jim Tartaglia; Giuseppe Pantaleo

To decrease virulence, we deleted the E3L gene, which is required for interferon-resistance and virulence, and replaced it with a gene from Ambystoma tigrinum virus (ATV, the new virus is NYVAC-C+12-ATV), which restores a single round of replication. Results In vitro characterization of the constructs demonstrates restoration of replication in primary and human cell lines. NYVAC-C+12-ATV leads to induction of pro-inflammatory signal transduction pathways. Pathogenicity studies in newborn mice demonstrate attenuation of 3–5 logs when compared to wt vaccinia virus or to NYCBH.

Collaboration


Dive into the Trung Huynh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shukmei Wong

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacy D. White

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge