Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand Boisson is active.

Publication


Featured researches published by Bertrand Boisson.


Science | 2012

Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.

Dusan Bogunovic; Minji Byun; Larissa A. Durfee; Avinash Abhyankar; Ozden Sanal; Davood Mansouri; Sandra Salem; Irena Radovanovic; Audrey V. Grant; Parisa Adimi; Nahal Mansouri; Satoshi Okada; Vanessa L. Bryant; Xiao Fei Kong; Alexandra Y. Kreins; Marcela Moncada Velez; Bertrand Boisson; Soheila Khalilzadeh; U. Ozcelik; Ilad Alavi Darazam; John W. Schoggins; Charles M. Rice; Saleh Al-Muhsen; Marcel A. Behr; Guillaume Vogt; Anne Puel; Jacinta Bustamante; Philippe Gros; Jon M. Huibregtse; Laurent Abel

Tuberculosis Vaccine Conundrum Some children experience severe clinical disease when they are vaccinated against tuberculosis, an attenuated live vaccine that is normally innocuous in humans. Several germline mutations have been identified that account for this susceptibility, and now Bogunovic et al. (p. 1684, published online 2 August) add another to the list—ISG15. Uncovering this mutation, which is inherited in an autosomal recessive manner, was a surprise because studies with mice deficient in ISG15 showed enhanced susceptibility to some viral, but not bacterial, infections. Nevertheless, patients lacking ISG15 were not able to produce adequate amounts of interferon-γ, a cytokine critical for clearance of the bacteria. A mutation that accounts for adverse reactions to the Bacille Calmette-Guérin vaccine against tuberculosis is identified. ISG15 is an interferon (IFN)-α/β–inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. Here, we describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral, diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses that we tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes—granulocyte, in particular—reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ–inducing secreted molecule for optimal antimycobacterial immunity.


Journal of Experimental Medicine | 2010

Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma

Minji Byun; Avinash Abhyankar; Virginie Lelarge; Sabine Plancoulaine; Ayse Palanduz; Leyla Telhan; Bertrand Boisson; Capucine Picard; Scott Dewell; Connie Zhao; Emmanuelle Jouanguy; Stefan Feske; Laurent Abel; Jean-Laurent Casanova

Whole-exome sequencing reveals a homozygous splice-site mutation in the gene encoding STIM1 in a child with classic Kaposi sarcoma.


Nature | 2015

Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation

Xianqin Zhang; Dusan Bogunovic; Béatrice Payelle-Brogard; Véronique Francois-Newton; Scott D. Speer; Chao Yuan; Stefano Volpi; Zhi Li; Ozden Sanal; Davood Mansouri; Ilhan Tezcan; Gillian I. Rice; Chunyuan Chen; Nahal Mansouri; Seyed Alireza Mahdaviani; Yuval Itan; Bertrand Boisson; Satoshi Okada; Lu Zeng; Xing Wang; Hui Jiang; Wenqiang Liu; Tiantian Han; Delin Liu; Tao Ma; Bo Wang; Mugen Liu; Jing Yu Liu; Wang Q; Dilek Yalnizoglu

Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi–Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients’ cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants

Aziz Belkadi; Alexandre Bolze; Yuval Itan; Aurélie Cobat; Quentin B. Vincent; Alexander Antipenko; Lei Shang; Bertrand Boisson; Jean-Laurent Casanova; Laurent Abel

Significance Whole-exome sequencing (WES) is gradually being optimized to identify mutations in increasing proportions of the protein-coding exome, but whole-genome sequencing (WGS) is becoming an attractive alternative. WGS is currently more expensive than WES, but its cost should decrease more rapidly than that of WES. We compared WES and WGS on six unrelated individuals. The distribution of quality parameters for single-nucleotide variants (SNVs) and insertions/deletions (indels) was more uniform for WGS than for WES. The vast majority of SNVs and indels were identified by both techniques, but an estimated 650 high-quality coding SNVs (∼3% of coding variants) were detected by WGS and missed by WES. WGS is therefore slightly more efficient than WES for detecting mutations in the targeted exome. We compared whole-exome sequencing (WES) and whole-genome sequencing (WGS) in six unrelated individuals. In the regions targeted by WES capture (81.5% of the consensus coding genome), the mean numbers of single-nucleotide variants (SNVs) and small insertions/deletions (indels) detected per sample were 84,192 and 13,325, respectively, for WES, and 84,968 and 12,702, respectively, for WGS. For both SNVs and indels, the distributions of coverage depth, genotype quality, and minor read ratio were more uniform for WGS than for WES. After filtering, a mean of 74,398 (95.3%) high-quality (HQ) SNVs and 9,033 (70.6%) HQ indels were called by both platforms. A mean of 105 coding HQ SNVs and 32 indels was identified exclusively by WES whereas 692 HQ SNVs and 105 indels were identified exclusively by WGS. We Sanger-sequenced a random selection of these exclusive variants. For SNVs, the proportion of false-positive variants was higher for WES (78%) than for WGS (17%). The estimated mean number of real coding SNVs (656 variants, ∼3% of all coding HQ SNVs) identified by WGS and missed by WES was greater than the number of SNVs identified by WES and missed by WGS (26 variants). For indels, the proportions of false-positive variants were similar for WES (44%) and WGS (46%). Finally, WES was not reliable for the detection of copy-number variations, almost all of which extended beyond the targeted regions. Although currently more expensive, WGS is more powerful than WES for detecting potential disease-causing mutations within WES regions, particularly those due to SNVs.


Science | 2015

Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency

Michael J. Ciancanelli; Sarah X.L. Huang; Priya Luthra; Hannah Garner; Yuval Itan; Stefano Volpi; Fabien G. Lafaille; Céline Trouillet; Mirco Schmolke; Randy A. Albrecht; Elisabeth Israelsson; Hye Kyung Lim; Melina Casadio; Tamar Hermesh; Lazaro Lorenzo; Lawrence W. Leung; Vincent Pedergnana; Bertrand Boisson; Satoshi Okada; Capucine Picard; Benedicte Ringuier; Françoise Troussier; Damien Chaussabel; Laurent Abel; Isabelle Pellier; Luigi D. Notarangelo; Adolfo García-Sastre; Christopher F. Basler; Frederic Geissmann; Shen-Ying Zhang

A genetic cause for severe influenza Although chicken soup and plenty of rest get most kids through an influenza virus infection, some require hospitalization. Ciancanelli et al. report on one child who suffered severely from influenza because of null mutations in the gene for transcription factor IRF7. Cells isolated from this patient could not make enough secreted antiviral proteins, called interferons, to halt viral replication. The requirement for IRF7 seems quite specific, because this patient recovers normally from other common childhood viral infections. Science, this issue p. 448 A mutation that reduces antiviral interferons underlies certain cases of severe influenza in children. Severe influenza disease strikes otherwise healthy children and remains unexplained. We report compound heterozygous null mutations in IRF7, which encodes the transcription factor interferon regulatory factor 7, in an otherwise healthy child who suffered life-threatening influenza during primary infection. In response to influenza virus, the patient’s leukocytes and plasmacytoid dendritic cells produced very little type I and III interferons (IFNs). Moreover, the patient’s dermal fibroblasts and induced pluripotent stem cell (iPSC)–derived pulmonary epithelial cells produced reduced amounts of type I IFN and displayed increased influenza virus replication. These findings suggest that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans. They also show that severe influenza may result from single-gene inborn errors of immunity.


Journal of Cell Biology | 2014

TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO–IKK supramolecular structures

Nadine Tarantino; Jean-Yves Tinevez; Elizabeth Faris Crowell; Bertrand Boisson; Ricardo Henriques; Musa M. Mhlanga; Fabrice Agou; Alain Israël; Emmanuel Laplantine

The mechanism of NEMO recruitment into supramolecular complexes and its dependence on ubiquitination differs in response to the proinflammatory cytokines TNF and IL-1.


Journal of Experimental Medicine | 2015

Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome

Alexandra Y. Kreins; Michael J. Ciancanelli; Satoshi Okada; Xiao Fei Kong; Noé Ramírez-Alejo; Sara Sebnem Kilic; Jamila El Baghdadi; Shigeaki Nonoyama; Seyed Alireza Mahdaviani; Fatima Ailal; Aziz Bousfiha; Davood Mansouri; Elma Nievas; Cindy S. Ma; Geetha Rao; Andrea Bernasconi; Hye Sun Kuehn; Julie E. Niemela; Jennifer Stoddard; Paul Deveau; Aurélie Cobat; Safa El Azbaoui; Ayoub Sabri; Che Kang Lim; Mikael Sundin; Danielle T. Avery; Rabih Halwani; Audrey V. Grant; Bertrand Boisson; Dusan Bogunovic

Kreins et al. report the identification and immunological characterization of a group of TYK2-deficient patients.


Journal of Experimental Medicine | 2015

Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis

Yun Ling; Sophie Cypowyj; Caner Aytekin; Miguel Galicchio; Yildiz Camcioglu; Serdar Nepesov; Aydan Ikinciogullari; Figen Dogu; Aziz Belkadi; Romain Levy; Mélanie Migaud; Bertrand Boisson; Alexandre Bolze; Yuval Itan; Nicolas Goudin; Julien Cottineau; Capucine Picard; Laurent Abel; Jacinta Bustamante; Jean-Laurent Casanova; Anne Puel

Autosomal-recessive IL-17RA, IL-17RC, and ACT1 deficiencies and autosomal-dominant IL-17F deficiency in humans underlie susceptibility to chronic mucocutaneous candidiasis.


Journal of Experimental Medicine | 2015

Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia

Bertrand Boisson; Emmanuel Laplantine; Kerry Dobbs; Aurélie Cobat; Nadine Tarantino; Melissa Hazen; Hart G.W. Lidov; Gregory Hopkins; Likun Du; Aziz Belkadi; Maya Chrabieh; Yuval Itan; Capucine Picard; Jean-Christophe Fournet; Hermann Eibel; Erdyni Tsitsikov; Sung-Yun Pai; Laurent Abel; Waleed Al-Herz; Jean-Laurent Casanova; Alain Israël; Luigi D. Notarangelo

Boisson et al. report a human homozygous mutation of HOIP, the gene encoding the catalytic component of the linear ubiquitination chain assembly complex, LUBAC. The missense alleles impair the expression of HOIP, destabilizing the LUBAC complex and resulting in immune cell dysfunction leading to multiorgan inflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectactasia.


Nature Methods | 2016

The mutation significance cutoff: gene-level thresholds for variant predictions

Yuval Itan; Lei Shang; Bertrand Boisson; Michael J. Ciancanelli; Janet Markle; Rubén Martínez-Barricarte; Eric Scott; Ishaan Shah; Peter D. Stenson; Joseph G. Gleeson; David Neil Cooper; Lluis Quintana-Murci; Shen-Ying Zhang; Laurent Abel; Jean-Laurent Casanova

Next-generation sequencing (NGS) has made it possible to identify about 20,000 variants in the protein-coding exome of each individual, of which only a few are likely to underlie a genetic disease. Variant-level methods such as PolyPhen-2, SIFT and CADD are useful for obtaining a prediction as to whether a given variant is benign/damaging1–3 or tolerant/intolerant1–3 (we hereafter use the terms benign/deleterious). These methods are commonly interpreted in a binary manner for filtering out benign variants from NGS data, with a single significance cutoff value across all protein-coding genes. PolyPhen-2 and SIFT integrate the fixed cutoff in the software. CADD proposed (but did not recommend for categorical usage) the fixed value of 15 (or another value between 10 and 20). Gene-level methods, such as RVIS, de novo excess and GDI are also useful4–6. Combining fixed gene-level and variant-level cutoffs is also applied in the RVIS hot zone approach4. However, owing to the diversity of medical and population genetic features between human genes and across populations, a uniform cutoff is unlikely to be accurate genome-wide.

Collaboration


Dive into the Bertrand Boisson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Itan

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Laurent Abel

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Capucine Picard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Anne Puel

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Shang

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge