Besnik Muqaku
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Besnik Muqaku.
Journal of Proteome Research | 2014
Andrea Bileck; Dominique Kreutz; Besnik Muqaku; Astrid Slany; Christopher Gerner
Inflammation is a physiological process involved in many diseases. Monitoring proteins involved in regulatory effects may help to improve our understanding of inflammation. We have analyzed proteome alterations induced in peripheral blood mononuclear cells (PBMCs) upon inflammatory activation in great detail using high-resolution mass spectrometry. Moreover, the activated cells were treated with dexamethasone to investigate their response to this antiphlogistic drug. From a total of 6886 identified proteins, 469 proteins were significantly regulated upon inflammatory activation. Data are available via ProteomeXchange with identifiers PXD001415-23. Most of these proteins were counter-regulated by dexamethasone, with some exceptions concerning members of the interferon-induced protein family. To confirm some of these results, we performed targeted MRM analyses of selected peptides. The inflammation-induced upregulation of proteins such as IL-1β, IL-6, CXCL2, and GROα was confirmed, however, with strong quantitative interindividual differences. Furthermore, the inability of dexamethasone to downregulate inflammation-induced proteins such as PTX3 and TSG6 was clearly demonstrated. In conclusion, the relation of cell function as well as drug-induced modulation thereof was successfully mapped to proteomes, suggesting targeted analysis as a novel and powerful drug evaluation method. Although most consequences of dexamethasone were found to be compatible with the expected mode of action, some unexpected but significant observations may be related to adverse effects.
Molecular & Cellular Proteomics | 2016
Astrid Slany; Andrea Bileck; Dominique Kreutz; Rupert L. Mayer; Besnik Muqaku; Christopher Gerner
In order to systematically analyze proteins fulfilling effector functionalities during inflammation, here we present a comprehensive proteome study of inflammatory activated primary human endothelial cells and fibroblasts. Cells were stimulated with interleukin 1-β and fractionated in order to obtain secreted, cytoplasmic and nuclear protein fractions. Proteins were submitted to a data-dependent bottom up analytical platform using a QExactive orbitrap and the MaxQuant software for protein identification and label-free quantification. Results were further combined with similarly generated data previously obtained from the analysis of inflammatory activated peripheral blood mononuclear cells. Applying a false discovery rate of less than 0.01 at both, peptide and protein level, a total of 8370 protein groups assembled from 117,599 peptides was identified; mass spectrometry data have been made fully accessible via ProteomeXchange with identifier PXD003406 to PXD003417.Comparative proteome analysis allowed us to determine common and cell type-specific inflammation signatures comprising novel candidate marker molecules and related expression patterns of transcription factors. Cardinal features of inflammation such as interleukin 1-β processing and the interferon response differed substantially between the investigated cells. Furthermore, cells also exerted similar inflammation-related tasks; however, by making use of different sets of proteins. Hallmarks of inflammation thus emerged, including angiogenesis, extracellular matrix reorganization, adaptive and innate immune responses, oxidative stress response, cell proliferation and differentiation, cell adhesion and migration in addition to monosaccharide metabolic processes, representing both, common and cell type-specific responsibilities of cells during inflammation.
The Breast | 2015
Astrid Slany; Andrea Bileck; Besnik Muqaku; Christopher Gerner
In recent years, mass spectrometry-based proteomics has undergone significant development steps which may be divided into an exploratory phase, a consolidation phase and an application phase. We are in a stage now where we are able to apply mass spectrometric technologies to answer complex and clinically relevant questions. This is demonstrated here with respect to a current hot topic, namely the consideration of the cancer-supporting microenvironment as a target of new and more efficient anti-cancer therapy. Actually, the relevance of micro environmental stromal cells to tumor initiation and promotion has been clearly recognized. However, the individual kind and degree of stroma-derived tumor promotion can so far hardly be determined in patients, and hardly any therapeutic option exists to dismantle the cancer cells of the stroma-derived support. Quite remarkably, the response of stromal cells to standard chemotherapeutics is also rather unknown. In this Perspective, experimental strategies how to address such issues are outlined in detail. Different cell systems are presented as powerful models which allow identifying relevant marker molecules. Targeted proteomics is presented as method of choice for both, drug screening in vitro as well as monitoring drug responses in patients. By this means, a way of classifying different functional tumor promoting mechanisms, evaluating how current treatment strategies may affect cancer-associated fibroblasts, identifying effective drugs targeting these cancer-associated cells and, may be most importantly, demonstrating how combined therapeutic strategies may improve the efficiency of anti-cancer treatments are indicated.
Molecular & Cellular Proteomics | 2017
Besnik Muqaku; Martin Eisinger; Samuel M. Meier; Ammar Tahir; Tobias Pukrop; Sebastian Haferkamp; Astrid Slany; Albrecht Reichle; Christopher Gerner
Pathophysiologies of cancer-associated syndromes such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA, and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44, and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alter levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia.
Molecular Nutrition & Food Research | 2016
Besnik Muqaku; Ammar Tahir; Philip Klepeisz; Andrea Bileck; Dominique Kreutz; Rupert L. Mayer; Samuel M. Meier; Marlene Gerner; Klaus G. Schmetterer; Christopher Gerner
SCOPE Anti-inflammatory effects of coffee consumption have been reported to be caused by caffeine and adenosine receptor signaling. However, contradictory effects have been observed. Many kinds of chronic diseases are linked to inflammation; therefore a profound understanding of potential effects of coffee consumption is desirable. METHODS AND RESULTS We performed ex vivo experiments with eight individuals investigating peripheral blood mononuclear cells isolated from venous blood before and after coffee consumption, as well as in vitro experiments applying caffeine on isolated cells. After in vitro inflammatory stimulation of the cells, released cytokines, chemokines, and eicosanoids were determined and quantified using targeted mass spectrometric methods. Remarkably, the release of inflammation mediators IL6, IL8, GROA, CXCL2, CXCL5 as well as PGA2, PGD2, prostaglandin E2 (PGE2), LTC4, LTE4, and 15S-HETE was significantly affected after coffee consumption. While in several individuals coffee consumption or caffeine treatment caused significant downregulation of most inflammation mediators, in other healthy individuals exactly the opposite effects were observed. CONCLUSION Ruling out age, sex, coffee consumption habits, the metabolic kinetics of caffeine in blood and the individual amount of regulatory T cells or CD39 expression as predictive parameters, we demonstrated here that coffee consumption may have significant pro- or anti-inflammatory effects in an individual fashion.
PLOS ONE | 2015
Samuel M. Meier; Besnik Muqaku; Ronald Ullmann; Andrea Bileck; Dominique Kreutz; Johanna C. Mader; Siegfried Knasmüller; Christopher Gerner
Classical drug assays are often confined to single molecules and targeting single pathways. However, it is also desirable to investigate the effects of complex mixtures on complex systems such as living cells including the natural multitude of signalling pathways. Evidence based on herbal medicine has motivated us to investigate potential beneficial health effects of Mucor racemosus (M rac) extracts. Secondary metabolites of M rac were collected using a good-manufacturing process (GMP) approved production line and a validated manufacturing process, in order to obtain a stable product termed SyCircue (National Drug Code USA: 10424–102). Toxicological studies confirmed that this product does not contain mycotoxins and is non-genotoxic. Potential effects on inflammatory processes were investigated by treating stimulated cells with M rac extracts and the effects were compared to the standard anti-inflammatory drug dexamethasone on the levels of the proteome and metabolome. Using 2D-PAGE, slight anti-inflammatory effects were observed in primary white blood mononuclear cells, which were more pronounced in primary human umbilical vein endothelial cells (HUVECs). Proteome profiling based on nLC-MS/MS analysis of tryptic digests revealed inhibitory effects of M rac extracts on pro-inflammatory cytoplasmic mediators and secreted cytokines and chemokines in these endothelial cells. This finding was confirmed using targeted proteomics, here treatment of stimulated cells with M rac extracts down-regulated the secretion of IL-6, IL-8, CXCL5 and GROA significantly. Finally, the modulating effects of M rac on HUVECs were also confirmed on the level of the metabolome. Several metabolites displayed significant concentration changes upon treatment of inflammatory activated HUVECs with the M rac extract, including spermine and lysophosphatidylcholine acyl C18:0 and sphingomyelin C26:1, while the bulk of measured metabolites remained unaffected. Interestingly, the effects of M rac treatment on lipids were orthogonal to the effect of dexamethasone underlining differences in the overall mode of action.
Analytical Chemistry | 2017
Ammar Tahir; Andrea Bileck; Besnik Muqaku; Laura Niederstaetter; Dominique Kreutz; Rupert L. Mayer; Denise Wolrab; Samuel M. Meier; Astrid Slany; Christopher Gerner
During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.
Journal of Proteomics | 2018
Dominique Kreutz; Chomdao Sinthuvanich; Andrea Bileck; Lukas Janker; Besnik Muqaku; Astrid Slany; Christopher Gerner
Proteome profiling profoundly contributes to the understanding of cell response mechanisms to drug actions. Such knowledge may become a key to improve personalized medicine. In the present study, the effects of the natural remedy curcumin on breast cancer model systems were investigated. MCF-7, ZR-75-1 and TGF-β1 pretreated fibroblasts, mimicking cancer-associated fibroblasts (CAFs), were treated independently as well as in tumor cell/CAF co-cultures. Remarkably, co-culturing with CAF-like cells (CLCs) induced different proteome alterations in MCF-7 and ZR-75-1 cells, respectively. Curcumin significantly induced HMOX1 in single cell type models and co-cultures. However, other curcumin effects differed. In the MCF-7/CLC co-culture, curcumin significantly down-regulated RC3H1, a repressor of inflammatory signaling. In the ZR-75-1/CLC co-culture, curcumin significantly down-regulated PEG10, an anti-apoptotic protein, and induced RRAGA, a pro-apoptotic protein involved in TNF-alpha signaling. Furthermore, curcumin induced AKR1C2, an important enzyme for progesterone metabolism. None of these specific curcumin effects were observed in single cell type cultures. All high-resolution mass spectrometry data are available via ProteomeXchange with the identifier PXD008719. The present data demonstrate that curcumin induces proteome alterations, potentially accounting for its known antitumor effects, in a strongly context-dependent fashion. BIOLOGICAL SIGNIFICANCE Better means to understand and potentially predict individual variations of drug effects are urgently required. The present proteome profiling study of curcumin effects demonstrates the massive impact of the cell microenvironment on cell responses to drug action. Co-culture models apparently provide more biologically relevant information regarding curcumin effects than single cell type cultures.
Analytical and Bioanalytical Chemistry | 2015
Besnik Muqaku; Astrid Slany; Andrea Bileck; Dominique Kreutz; Christopher Gerner
Archives of Toxicology | 2016
Andrea Bileck; Franziska Ferk; Halh Al-Serori; Verena J. Koller; Besnik Muqaku; Alexander G. Haslberger; Volker Auwärter; Christopher Gerner; Siegfried Knasmüller