Bess G. Koffman
University of Maine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bess G. Koffman.
Applied and Environmental Microbiology | 2006
Jennifer L. Macalady; Ezra H. Lyon; Bess G. Koffman; Lindsey K. Albertson; Katja Meyer; Sandro Galdenzi; Sandro Mariani
ABSTRACT Waters from an extensive sulfide-rich aquifer emerge in the Frasassi cave system, where they mix with oxygen-rich percolating water and cave air over a large surface area. The actively forming cave complex hosts a microbial community, including conspicuous white biofilms coating surfaces in cave streams, that is isolated from surface sources of C and N. Two distinct biofilm morphologies were observed in the streams over a 4-year period. Bacterial 16S rDNA libraries were constructed from samples of each biofilm type collected from Grotta Sulfurea in 2002. β-, γ-, δ-, and ε-proteobacteria in sulfur-cycling clades accounted for ≥75% of clones in both biofilms. Sulfate-reducing and sulfur-disproportionating δ-proteobacterial sequences in the clone libraries were abundant and diverse (34% of phylotypes). Biofilm samples of both types were later collected at the same location and at an additional sample site in Ramo Sulfureo and examined, using fluorescence in situ hybridization (FISH). The biomass of all six stream biofilms was dominated by filamentous γ-proteobacteria with Beggiatoa-like and/or Thiothrix-like cells containing abundant sulfur inclusions. The biomass of ε-proteobacteria detected using FISH was consistently small, ranging from 0 to less than 15% of the total biomass. Our results suggest that S cycling within the stream biofilms is an important feature of the cave biogeochemistry. Such cycling represents positive biological feedback to sulfuric acid speleogenesis and related processes that create subsurface porosity in carbonate rocks.
Nature | 2015
Christo Buizert; Betty M. Adrian; Jinho Ahn; Mary R. Albert; Richard B. Alley; Daniel Baggenstos; Thomas K. Bauska; R. Bay; Brian B. Bencivengo; Charles R. Bentley; Edward J. Brook; Nathan Chellman; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Eric D. Cravens; Kurt M. Cuffey; Nelia W. Dunbar; Jon Edwards; John M. Fegyveresi; Dave G. Ferris; T. J. Fudge; Chris J. Gibson; Vasileios Gkinis; Joshua J. Goetz; Stephanie Gregory; Geoffrey M. Hargreaves; Nels Iverson; Jay A. Johnson; Tyler R. Jones
The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.
Environmental Science & Technology | 2012
Daniel Breton; Bess G. Koffman; Andrei V. Kurbatov; Karl J. Kreutz; Gordon S. Hamilton
We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.
Journal of Geophysical Research | 2017
Bess G. Koffman; Eleanor G. Dowd; Erich C. Osterberg; David G. Ferris; Laura H. Hartman; Sarah D. Wheatley; Andrei V. Kurbatov; Gifford J. Wong; Bradley R. Markle; Nelia W. Dunbar; Karl J. Kreutz; Martin G. Yates
The Volcanic Explosivity Index (VEI) 5 eruption of the Puyehue-Cordon Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and deposition of sulfate and ash from a mid-latitude volcano to the Antarctic ice sheet. We present sulfate, microparticle concentrations of fine-grained (~5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. From the depositional phasing and duration of ash and sulfate peaks, we infer that transport occurred primarily through the troposphere but that ash and sulfate transport were decoupled. We use Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectory modeling to assess atmospheric circulation conditions in the weeks following the eruption, and find that conditions favored southward air parcel transport during 6-14 June and 4-18 July, 2011. We suggest that two discrete pulses of cryptotephra deposition relate to these intervals, and as such, constrain the sulfate transport and deposition lifespan to the ~2-3 weeks following the eruption. Finally, we compare PCC depositional patterns to those of prominent low- and high-latitude eruptions in order to improve multiparameter-based efforts to identify “unknown source” eruptions in the ice core record. Our observations suggest that mid-latitude eruptions such as PCC can be distinguished from explosive tropical eruptions by differences in ash/sulfate phasing and in the duration of sulfate deposition, and from high-latitude eruptions by differences in particle size distribution and in cryptotephra geochemical composition.
Journal of Geophysical Research | 2018
David Polashenski; Erich C. Osterberg; Bess G. Koffman; Dominic Winski; Karen Stamieszkin; Karl J. Kreutz; Cameron P. Wake; David G. Ferris; Douglas S. Introne; Seth Campbell; Gabriel Lewis
The high-nutrient, low-chlorophyll region of the northeastern (NE) subarctic Pacific is one of the most biologically productive marine ecosystems in the world, supporting fisheries worth over
Past Global Changes Magazine | 2014
Bess G. Koffman; Karl J. Kreutz
5 billion annually. Phytoplankton are the primary producers in this ecosystem and are also a major source of biogenic sulfur emissions, important in Earth’s climate system. However, variability in marine primary production through time is not well constrained. Here we establish methanesulfonic acid (MSA) concentrations in the Denali ice core as a proxy for marine primary production in the NE Pacific. Using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT; Stein et al., 2015, https://doi.org/10.1178/BAMS-D-14-00110.1) modeling, we identify moisture source regions for the core site and correlate Sea-Viewing Wide Field-of-View Sensor-derived chlorophyll a concentrations with ice core MSA. From 1998 to 2007 we find that areas of significant positive correlation overlap with the HYSPLIT-inferred moisture source region in the western Gulf of Alaska on an annual basis (r = 0.85, p < 0.001). We identify an MSA response to a localized bloom related to ash deposition from a 2009 Mt. Redoubt eruption. An anomalous upwelling-driven bloom in spring 2008 did not impact the ice core MSA record due to unfavorable transport conditions. Despite this, we observe that bloom events are rarely missed in the MSA record, which we attribute to the consistent and high snow accumulation rate at the ice core drill site. Our findings suggest that Denali ice core MSA is a reliable recorder of changes in marine primary production through time in the NE subarctic Pacific. Plain Language Summary The base of the marine food web is composed of single-celled photosynthetic organisms that are collectively termed primary producers. Because these microscopic organisms support all marine life, changes in their biomass can impact the entire food web. Over the past three decades, satellite data have shown that primary producers are declining around the world with some of the greatest declines occurring in the North Pacific Ocean. The reasons for these declines may include changes in ocean temperatures, nutrient availability, and wind-driven ocean mixing, all of which are related to climate. To place these changes within a longer-term context, we seek to validate regionally a proxy tool by measuring a chemical produced by phytoplankton called methanesulfonic acid (MSA). MSA is transported through the atmosphere by storms and deposited on mountain glaciers in the North Pacific region. WemeasuredMSA in a new ice core fromDenali National Park, Alaska. We describe strong, statistically significant correlations between ice core MSA concentrations and chlorophyll concentrations in the western Gulf of Alaska. We suggest that the ice core MSA proxy record can help us understand how primary production in this region has changed through time.
Climate of The Past | 2016
Michael Sigl; T. J. Fudge; Mai Winstrup; Jihong Cole-Dai; David G. Ferris; Joseph R. McConnell; Ken C. Taylor; Kees C. Welten; Thomas E. Woodruff; Florian Adolphi; M. M. Bisiaux; Edward J. Brook; Christo Buizert; Marc W. Caffee; Nelia W. Dunbar; Ross Edwards; Lei Geng; Nels Iverson; Bess G. Koffman; Lawrence Layman; Olivia J. Maselli; Kenneth C. McGwire; Raimund Muscheler; Kunihiko Nishiizumi; Daniel R. Pasteris; Rachael H. Rhodes; Todd Sowers
Polar ice is an important high-latitude archive of past environmental and atmospheric changes. the physical measurement of dust particles trapped in well-dated ice cores provides independent information, in the form of dust flux and particle size distribution (PSD) parameters, about past environmental changes in dust source regions, the proximity of dust sources, and variability in atmospheric circulation intensity. Much effort has gone into understanding the sources and transport of dust to the high-elevation sites (~3200-3500 m a.s.l.) Vostok and Dome c on the East Antarctic Ice Sheet (EAIS) plateau (Fig. 1). these records together provide a climatic history spanning the past eight glacial cycles (Lambert et al. 2008; Petit et al, 1999; Wolff et al. 2006). the East Antarctic plateau predominantly receives far-traveled dust, as evidenced by its lognormal distribution, small size (mode of 2 μm) and geochemical signature (e.g. basile et al. 1997; Delmonte et al. 2004). the ice cores from this region provide invaluable information about hemispheric-scale changes in dust emissions and transport, but due to their high altitude, they do not capture dust carried in the lower-to-middle troposphere, and thus do not represent dust delivery to about half the Antarctic continent.
Climate of The Past | 2014
Bess G. Koffman; Karl J. Kreutz; Daniel Breton; E. J. Kane; Dominic Winski; Sean D. Birkel; Andrei V. Kurbatov; M. Handley
Journal of Glaciology | 2014
Bess G. Koffman; Michael Handley; Erich C. Osterberg; Mark Wells; Karl J. Kreutz
Geophysical Research Letters | 2013
Bess G. Koffman; Karl J. Kreutz; Andrei V. Kurbatov; Nelia W. Dunbar