Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei V. Kurbatov is active.

Publication


Featured researches published by Andrei V. Kurbatov.


Journal of Glaciology | 2004

Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering

Kendrick C. Taylor; Richard B. Alley; D. A. Meese; Matthew K. Spencer; Edward J. Brook; Nelia W. Dunbar; Robert C. Finkel; Anthony J. Gow; Andrei V. Kurbatov; Gregg Lamorey; Paul Andrew Mayewski; Eric A. Meyerson; Kunihiko Nishiizumi; Gregory A. Zielinski

The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core.The data were interpreted manuallyandwith acomputeralgorithm.The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, 10 Be stratigraphic ties to the dendrochronology 14 C recordandthedatedvolcanic stratigraphy.Thealgorithm interpretation ismorecon- sistent andbetter quantifiedthanthe tedious and subjective manual interpretation.


Annals of Glaciology | 2005

Snow Chemistry Across Antarctica

Nancy A. N. Bertler; Paul Andrew Mayewski; Alberto J. Aristarain; P. Barrett; S. Becagli; R. Bernardo; S. Bo; C. Xiao; M. Curran; D. Qin; Daniel A. Dixon; Francisco A. Ferron; Hubertus Fischer; Markus M. Frey; M. Frezzotti; F. Fundel; C. Genthon; Roberto Gragnani; Gordon S. Hamilton; M. Handley; Sungmin Hong; Elisabeth Isaksson; J.-H. Kang; J. Ren; K. Kamiyama; S. Kanamori; E. Karkas; L. Karlöf; Susan Kaspari; Karl J. Kreutz

Abstract An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica

J.A. Higgins; Andrei V. Kurbatov; Nicole E. Spaulding; Edward J. Brook; Douglas S. Introne; Laura M. Chimiak; Yuzhen Yan; Paul Andrew Mayewski; Michael L. Bender

Significance Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800 ky. Here, we present new ice core records of atmospheric composition roughly 1 Ma from a shallow ice core drilled in the Allan Hills blue ice area, Antarctica. These records confirm that interglacial CO2 concentrations decreased by 800 ka. They also show that the link between CO2 and Antarctic temperature extended into the warmer world of the mid-Pleistocene. Here, we present direct measurements of atmospheric composition and Antarctic climate from the mid-Pleistocene (∼1 Ma) from ice cores drilled in the Allan Hills blue ice area, Antarctica. The 1-Ma ice is dated from the deficit in 40Ar relative to the modern atmosphere and is present as a stratigraphically disturbed 12-m section at the base of a 126-m ice core. The 1-Ma ice appears to represent most of the amplitude of contemporaneous climate cycles and CO2 and CH4 concentrations in the ice range from 221 to 277 ppm and 411 to 569 parts per billion (ppb), respectively. These concentrations, together with measured δD of the ice, are at the warm end of the field for glacial–interglacial cycles of the last 800 ky and span only about one-half of the range. The highest CO2 values in the 1-Ma ice fall within the range of interglacial values of the last 400 ka but are up to 7 ppm higher than any interglacial values between 450 and 800 ka. The lowest CO2 values are 30 ppm higher than during any glacial period between 450 and 800 ka. This study shows that the coupling of Antarctic temperature and atmospheric CO2 extended into the mid-Pleistocene and demonstrates the feasibility of discontinuously extending the current ice core record beyond 800 ka by shallow coring in Antarctic blue ice areas.


Environmental Science & Technology | 2012

Quantifying Signal Dispersion in a Hybrid Ice Core Melting System

Daniel Breton; Bess G. Koffman; Andrei V. Kurbatov; Karl J. Kreutz; Gordon S. Hamilton

We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.


Annals of Glaciology | 2004

Sulfur isotopic measurements from a West Antarctic ice core: implications for sulfate source and transport

Lee E. Pruett; Karl J. Kreutz; Moire Wadleigh; Paul Andrew Mayewski; Andrei V. Kurbatov

Abstract Measurements of δ34S covering the years 1935–76 and including the 1963 Agung (Indonesia) eruption were made on a West Antarctic firn core, RIDSA (78.73˚ S, 116.33˚ W; 1740ma.s.l.), and results are used to unravel potential source functions in the sulfur cycle over West Antarctica. The δ34S values of SO42– range from 3.1‰ to 9.9‰. These values are lower than those reported for central Antarctica, from near South Pole station, of 9.3–18.1‰ (Patris and others, 2000). While the Agung period is isotopically distinct at South Pole, it is not in the RIDSA dataset, suggesting differences in the source associations for the sulfur cycle between these two regions. Given the relatively large input of marine aerosols at RIDSA (determined from Na+ data and the seasonal SO42– cycle), there is likely a large marine biogenic SO42– influence. The δ34S values indicate, however, that this marine biogenic SO42–, with a well-established δ34S of 18‰, is mixing with SO42– that has extremely negative δ34S values to produce the measured isotope values in the RIDSA core. We suggest that the transport and deposition of stratospheric SO42– in West Antarctica, combined with local volcanic input, accounts for the observed variance in δ34S values.


GeoHealth | 2017

Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death

Alexander F. More; Nicole E. Spaulding; Pascal Bohleber; Michael Handley; Helene Hoffmann; Elena V. Korotkikh; Andrei V. Kurbatov; Chris Loveluck; Sharon B. Sneed; Michael McCormick; Paul Mayewski

Abstract Contrary to widespread assumptions, next‐generation high (annual to multiannual) and ultra‐high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Death pandemic, demographic and economic collapse interrupted metal production and atmospheric lead dropped to undetectable levels. This finding challenges current government and industry understanding of preindustrial lead pollution and its potential implications for human health of children and adults worldwide. Available technology and geographic location have limited previous ice core investigations. We provide new high‐ (discrete, inductively coupled plasma mass spectrometry, ICP‐MS) and ultra‐high resolution (laser ablation inductively coupled plasma mass spectrometry, LA‐ICP‐MS) records of atmospheric lead deposition extracted from the high Alpine glacier Colle Gnifetti, in the Swiss‐Italian Alps. We show that contrary to the conventional wisdom, low levels at or approaching natural background occurred only in a single 4 year period in ~2000 years documented in the new ice core, during the Black Death (~1349–1353 C.E.), the most devastating pandemic in Eurasian history. Ultra‐high chronological resolution allows for the first time detailed and decisive comparison of the new glaciochemical data with historical records. Historical evidence shows that mining activity ceased upwind of the core site from ~1349 to 1353, while concurrently on the glacier lead (Pb) concentrations—dated by layer counting confirmed by radiocarbon dating—dropped to levels below detection, an order of magnitude beneath figures deemed low in earlier studies. Previous assumptions about preindustrial “natural” background lead levels in the atmosphere—and potential impacts on humans—have been misleading, with significant implications for current environmental, industrial, and public health policy, as well as for the history of human lead exposure. Trans‐disciplinary application of this new technology opens the door to new approaches to the study of the anthropogenic impact on past and present human health.


Climate of The Past Discussions | 2017

A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica

Mai Winstrup; Paul Vallelonga; Helle A. Kjær; T. J. Fudge; James E. Lee; Marie H. Riis; Ross Edwards; Nancy A. N. Bertler; Thomas Blunier; Edward J. Brook; Christo Buizert; Gabriela Ciobanu; Howard Conway; Dorthe Dahl-Jensen; A. Ellis; B. Daniel Emanuelsson; Elizabeth D. Keller; Andrei V. Kurbatov; Paul Andrew Mayewski; Peter D. Neff; Rebecca L. Pyne; Marius Simonsen; Anders Svensson; Andrea Tuohy; Ed Waddington; Sarah D. Wheatley

We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25± 0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may Published by Copernicus Publications on behalf of the European Geosciences Union. 752 M. Winstrup et al.: Timescale and accumulation history for an ice core from Roosevelt Island thus mark the onset of significant increases in regional seaice extent.


The Journal of Geology | 2018

Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments

Wendy S. Wolbach; Joanne P. Ballard; Paul Andrew Mayewski; Andrew C. Parnell; Niamh Cahill; Victor Adedeji; Theodore E. Bunch; Gabriela Domínguez-Vázquez; Jon M. Erlandson; R. B. Firestone; Timothy A. French; Isabel Israde-Alcántara; John R. Johnson; David R. Kimbel; Charles R. Kinzie; Andrei V. Kurbatov; Gunther Kletetschka; Malcolm LeCompte; William C. Mahaney; Adrian L. Melott; Siddhartha Mitra; Abigail Maiorana-Boutilier; Christopher R. Moore; William M. Napier; Jennifer Parlier; Kenneth B. Tankersley; Brian C. Thomas; James H. Wittke; Allen West; James P. Kennett

Part 1 of this study investigated evidence of biomass burning in global ice records, and here we continue to test the hypothesis that an impact event at the Younger Dryas boundary (YDB) caused an anomalously intense episode of biomass burning at ∼12.8 ka on a multicontinental scale (North and South America, Europe, and Asia). Quantitative analyses of charcoal and soot records from 152 lakes, marine cores, and terrestrial sequences reveal a major peak in biomass burning at the Younger Dryas (YD) onset that appears to be the highest during the latest Quaternary. For the Cretaceous-Tertiary boundary (K-Pg) impact event, concentrations of soot were previously utilized to estimate the global amount of biomass burned, and similar measurements suggest that wildfires at the YD onset rapidly consumed ∼10 million km2 of Earth’s surface, or ∼9% of Earth’s biomass, considerably more than for the K-Pg impact. Bayesian analyses and age regressions demonstrate that ages for YDB peaks in charcoal and soot across four continents are synchronous with the ages of an abundance peak in platinum in the Greenland Ice Sheet Project 2 (GISP2) ice core and of the YDB impact event (12,835–12,735 cal BP). Thus, existing evidence indicates that the YDB impact event caused an anomalously large episode of biomass burning, resulting in extensive atmospheric soot/dust loading that triggered an “impact winter.” This, in turn, triggered abrupt YD cooling and other climate changes, reinforced by climatic feedback mechanisms, including Arctic sea ice expansion, rerouting of North American continental runoff, and subsequent ocean circulation changes.


Scientific Reports | 2017

New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica

Nelia W. Dunbar; Nels Iverson; Alexa R. Van Eaton; Michael Sigl; Brent V. Alloway; Andrei V. Kurbatov; Larry G. Mastin; Joseph R. McConnell; Colin J. N. Wilson

Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580  ±  258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.


Journal of Geophysical Research | 2017

Rapid transport of ash and sulfate from the 2011 Puyehue‐Cordón Caulle (Chile) eruption to West Antarctica

Bess G. Koffman; Eleanor G. Dowd; Erich C. Osterberg; David G. Ferris; Laura H. Hartman; Sarah D. Wheatley; Andrei V. Kurbatov; Gifford J. Wong; Bradley R. Markle; Nelia W. Dunbar; Karl J. Kreutz; Martin G. Yates

The Volcanic Explosivity Index (VEI) 5 eruption of the Puyehue-Cordon Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and deposition of sulfate and ash from a mid-latitude volcano to the Antarctic ice sheet. We present sulfate, microparticle concentrations of fine-grained (~5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. From the depositional phasing and duration of ash and sulfate peaks, we infer that transport occurred primarily through the troposphere but that ash and sulfate transport were decoupled. We use Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectory modeling to assess atmospheric circulation conditions in the weeks following the eruption, and find that conditions favored southward air parcel transport during 6-14 June and 4-18 July, 2011. We suggest that two discrete pulses of cryptotephra deposition relate to these intervals, and as such, constrain the sulfate transport and deposition lifespan to the ~2-3 weeks following the eruption. Finally, we compare PCC depositional patterns to those of prominent low- and high-latitude eruptions in order to improve multiparameter-based efforts to identify “unknown source” eruptions in the ice core record. Our observations suggest that mid-latitude eruptions such as PCC can be distinguished from explosive tropical eruptions by differences in ash/sulfate phasing and in the duration of sulfate deposition, and from high-latitude eruptions by differences in particle size distribution and in cryptotephra geochemical composition.

Collaboration


Dive into the Andrei V. Kurbatov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nelia W. Dunbar

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge