Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beth L. Parker is active.

Publication


Featured researches published by Beth L. Parker.


Journal of Contaminant Hydrology | 2008

Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation

Beth L. Parker; Steven W. Chapman; Martin A. Guilbeault

This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.


Vadose Zone Journal | 2003

Review and Analysis of Chlorinated Solvent Dense Nonaqueous Phase Liquid Distributions in Five Sandy Aquifers

Beth L. Parker; John A. Cherry; Steven W. Chapman; Martin A. Guilbeault

To select and design effective remedial measures for dense, nonaqueous phase liquid (DNAPL) source zones, better understanding of the architecture of these zones is needed. In this study, a suite of investigative techniques was applied to perform detailed vertical delineation of chlorinated-solvent source zones in sand aquifers at five contaminated industrial sites (two in Connecticut, and one each in Florida, New Hampshire, and Ontario). The DNAPL occurs in the middle of the aquifers at three of the sites and at or near the bottom at the other two. The DNAPL entered the subsurface at these sites decades ago, and therefore the DNAPL zones have aged due to groundwater dissolution. The suite of investigative techniques was used to perform profile sampling using direct-push methods, in which depth-discrete soil and groundwater samples were taken with extremely close vertical spacing. The sampling included methods to distinguish between free-product and residual DNAPL at two of the sites. At each location where DNAPL was found, the DNAPL occurred in one or a few thin layers, generally between 1 and 30 cm thick. These layers were positioned within distinct grain-size zones, or at contacts between sedimentological layers. In some cases, the DNAPL layers have no apparent textural association. For any particular sampling hole to have a high probability of finding such layers, continuous cores must be collected and sampling of these cores must be done at very close vertical spacing (5 cm or less). Free-product DNAPL occurrences in conventional wells at three of the sites indicated, misleadingly, much greater DNAPL layer thicknesses than actual, and in one case, the conventional well may have caused short-circuiting of DNAPL from the middle to the bottom of the aquifer. Although all of the DNAPL source zones are comprised of only sporadic, thin DNAPL layers representing little total mass, these source zones are the cause of high-concentration dissolved plumes down gradient.


Journal of Contaminant Hydrology | 2009

Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods

Yumiko Abe; Ramon Aravena; Jakob Zopfi; Beth L. Parker; Daniel Hunkeler

The occurrence of chlorinated ethene transformation in a streambed was investigated using concentration and carbon isotope data from water samples taken at different locations and depths within a 15 x 25 m study area across which a tetrachloroethene (PCE) plume discharges. Furthermore, it was evaluated how the degree of transformation is related to groundwater discharge rates, redox conditions, solid organic matter content (SOM) and microbial factors. Groundwater discharge rates were quantified based on streambed temperatures, and redox conditions using concentrations of dissolved redox-sensitive species. The degree of chlorinated ethene transformation was highly variable in space from no transformation to transformation beyond ethene. Complete reductive dechlorination to ethane and ethene occurred at locations with at least sulfate-reducing conditions and with a residence time in the samples streambed zone (80 cm depth) of at least 10 days. Among these locations, Dehalococcoides was detected using a PCR method where SOM contents were >2% w/w and where transformation proceeded beyond ethene. However, it was not detected at locations with low SOM, which may cause an insufficient H(2) supply to sustain a detectably dense Dehalococcoides population. Additionally, it is possible that other organisms are responsible for the biodegradation. A microcosm study with streambed sediments demonstrated the potential of VC oxidation throughout the site even at locations without a pre-exposure to VC, consistent with the detection of the epoxyalkane:coenzyme M transferase (EaCoMT) gene involved in the degradation of chlorinated ethenes via epoxidation. In contrast, no aerobic transformation of cDCE in microcosms over a period of 1.5 years was observed. In summary, the study demonstrated that carbon isotope analysis is a sensitive tool to identify the degree of chlorinated ethene transformation even in hydrologically and geochemically complex streambed systems. In addition, it was observed that the degree of transformation is related to redox conditions, which in turn depend on groundwater discharge rates.


Journal of Contaminant Hydrology | 2009

Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate.

Thomas H. Henderson; K. Ulrich Mayer; Beth L. Parker; Tom A. Al

A popular method for the treatment of aquifers contaminated with chlorinated solvents is chemical oxidation based on the injection of potassium permanganate (KMnO(4)). Both the high density (1025 gL(-1)) and reactivity of the treatment solution influence the fate of permanganate (MnO(4)) in the subsurface and affect the degree of contaminant treatment. The MIN3P multicomponent reactive transport code was enhanced to simulate permanganate-based remediation, to evaluate the pathways of MnO(4) utilization, and to assess the role of density contrasts for the delivery of the treatment solution. The modified code (MIN3P-D) provides a direct coupling between density-dependent fluid flow, solute transport, contaminant treatment, and geochemical reactions. The model is used to simulate a field trial of TCE oxidation in a sandy aquifer that is underlain by an aquitard. Three-dimensional simulations are conducted for a coupled reactive system comprised of ten aqueous components, two mineral phases, TCE (dissolved, adsorbed, and NAPL), reactive organic matter, and including ion exchange reactions. Model parameters are constrained by literature data and a detailed data set from the field site under investigation. The general spatial and transient evolution in observed concentrations of the oxidant, dissolved TCE, and reaction products are adequately reproduced by the simulations. The model elucidates the important role of density-induced flow and transport on the distribution of the treatment solution into NAPL containing regions located at the aquifer-aquitard interface. Model results further suggest that reactions that do not directly affect the stability of MnO(4) have a negligible effect on solution density and MnO(4) delivery.


Journal of Contaminant Hydrology | 2009

Simulating the fate and transport of TCE from groundwater to indoor air.

Soonyoung Yu; A.J.A. Unger; Beth L. Parker

This work provides an exploratory analysis on the relative importance of various factors controlling the fate and transport of volatile organic contaminants (in this case, TCE) from a DNAPL source zone located below the water table and into the indoor air. The analysis is conducted using the multi-phase compositional model CompFlow Bio, with the base scenario problem geometry reminiscent of a field experiment conducted by Rivett [Rivett, M.O., (1995), Soil-gas signatures from volatile chlorinated solvents: Borden field experiments. Groundwater, 33(1), 84-98.] at the Borden aquifer where groundwater was observed to transport a contaminant plume a substantial distance without vertical mass transport of the contaminant across the capillary fringe and into the vadose zone. Results for the base scenario model indicate that the structure of the permeability field was largely responsible for deflecting the groundwater plume upward towards the capillary fringe, permitting aqueous phase diffusion to transport the TCE into the vadose zone. Alternative permeability realizations, generated as part of a Monte Carlo simulation process, at times deflected the groundwater plume downwards causing the extended thickness of the saturated zone to insulate the vadose zone from exposure to the TCE by upward diffusive transport. Comparison of attenuation coefficients calculated using the CompFlow Bio and Johnson and Ettinger [Johnson, P.C. and Ettinger, R.A., (1991), Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25, 1445-1452.] heuristic model exhibited fortuitous agreement for the base scenario problem geometry, with this agreement diverging for the alternative permeability realizations as well as when parameters such as the foundation slab fracture aperture, the indoor air pressure drop, the capillary fringe thickness, and the infiltration rate were varied over typical ranges.


Water Resources Research | 2000

Trichloroethene DNAPL flow and mass distribution in naturally fractured clay: Evidence of aperture variability

S. K. O'Hara; Beth L. Parker; P. R. Jørgensen; John A. Cherry

A cylindrical sample, 0.5 m in diameter and length, was obtained by excavation from 3.7–4.2 m depth below ground surface in a surficial deposit of fractured glaciolacustrine clay. The sample was enclosed in a triaxial cell in a cold room to impose conditions close to field temperature and stress. Hydraulic testing using a hydraulic gradient of 2 provided a saturated hydraulic conductivity of 7 × 10−10 m/s, which is only slightly larger than the matrix hydraulic conductivity. The cubic law provided a mean hydraulic aperture of 5–6 μm for the four continuous vertical fractures in the sample. A column of immiscible-phase trichloroethene (TCE) imposed incrementally at the top of the sample provided an entry-pressure-derived aperture equal to 17 μm for a parallel-plate fracture. TCE dense nonaqueous phase liquid (DNAPL) that flowed through the sample produced dissolved-phase diffusion haloes in the matrix that indicated the preferential fracture pathways. These haloes indicated that DNAPL flowed through only 5–15% of the visible, oxidation-stained fractures; hence natural fractures had variable apertures along their length, and the larger aperture regions provided channels for fluid flow. Using the hydraulic test results and applying the cubic law only to the aperture segments of confirmed DNAPL flow, an equivalent hydraulic aperture of 8–11 μm was obtained, which is greater than the conventional mean hydraulic aperture and smaller than the local aperture determined from the DNAPL entry pressure. These differences are large in the context of fluid flux, which is proportional to the aperture cubed.


Ground Water | 2010

Improved Resolution of Ambient Flow through Fractured Rock with Temperature Logs

Peeter E. Pehme; Beth L. Parker; John A. Cherry; John P. Greenhouse

In contaminant hydrogeology, investigations at fractured rock sites are typically undertaken to improve understanding of the fracture networks and associated groundwater flow that govern past and/or future contaminant transport. Conventional hydrogeologic, geophysical, and hydrophysical techniques used to develop a conceptual model are often implemented in open boreholes under conditions of cross-connected flow. A new approach using high-resolution temperature (+/-0.001 degrees C) profiles measured within static water columns of boreholes sealed using continuous, water-inflated, flexible liners (FLUTe) identifies hydraulically active fractures under ambient (natural) groundwater flow conditions. The value of this approach is assessed by comparisons of temperature profiles from holes (100 to 200 m deep) with and without liners at four contaminated sites with distinctly different hydrogeologic conditions. The results from the lined holes consistently show many more hydraulically active fractures than the open-hole profiles, in which the influence of vertical flow through the borehole between a few fractures masks important intermediary flow zones. Temperature measurements in temporarily sealed boreholes not only improve the sensitivity and accuracy of identifying hydraulically active fractures under ambient conditions but also offer new insights regarding previously unresolvable flow distributions in fractured rock systems, while leaving the borehole available for other forms of testing and monitoring device installation.


Ground Water | 2014

New Method for Continuous Transmissivity Profiling in Fractured Rock

Carl Keller; John A. Cherry; Beth L. Parker

A new method is presented to search for hydraulically transmissive features in open boreholes in bedrock. A flexible borehole liner made of a watertight, nylon fabric is filled with water to create a constant driving head to evert (reverse of invert) the liner down the hole so that the liner pushes the borehole water out into transmissive fractures or other permeable features. The descent rate is governed by the bulk transmissivity of the remaining permeable features below the liner. Initially, the liner descent rate or velocity is a measure of transmissivity (T) of the entire hole. As the everting liner passes and seals each permeable feature, changes in the liner velocity indicate the position of each feature and an estimate of T using the Thiem equation for steady radial flow. This method has been performed in boreholes with diameters ranging from 96 to 330 mm. Profiling commonly takes a few hours in holes 200- to 300-m long. After arrival of the liner at the bottom of the hole, the liner acts as a seal preventing borehole cross connection between transmissive features at different depths. Liner removal allows the hole to be used for other purposes. The T values determined using this method in a dolostone aquifer were found to be similar to the values from injection tests using conventional straddle packers. This method is not a replacement for straddle-packer hydraulic testing of specific zones where greater accuracy is desired; however, it is effective and efficient for scanning entire holes for transmissive features.


Journal of Contaminant Hydrology | 2011

Using constant head step tests to determine hydraulic apertures in fractured rock

Patryk Quinn; Beth L. Parker; John A. Cherry

The initial step in the analysis of contaminant transport in fractured rock requires the consideration of groundwater velocity. Practical methods for estimating the average linear groundwater velocity (v¯) in fractured rock require determination of hydraulic apertures which are commonly calculated by applying the cubic law using transmissivity (T) values and the number of hydraulically active fractures in the test interval. High-resolution, constant-head step injection testing of cored boreholes in a 100 m thick fractured dolostone aquifer was conducted using inflatable packers to isolate specific test intervals from the rest of the borehole. The steps in each test interval were gradually increased from very low to much higher injection rates. At smaller injection rates, the flow rate vs. applied pressure graph projects through the origin and indicates Darcian flow; non Darcian flow is evident at higher injection rates. Non-Darcian flow results in significantly lower calculated T values, which translates to smaller hydraulic aperture values. Further error in the calculated hydraulic aperture stems from uncertainty in the number of hydraulically active fractures in each test interval. This estimate can be inferred from borehole image and core logs, however, all of the fractures identified are not necessarily hydraulically active. This study proposes a method based on Reynolds number calculations aimed at improving confidence in the selection of the number of active fractures in each test interval.


Journal of Contaminant Hydrology | 2008

Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field

Yong Keun Hwang; Anthony L. Endres; Scott D. Piggott; Beth L. Parker

An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.

Collaboration


Dive into the Beth L. Parker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ulrich Mayer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Tom A. Al

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge