Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beth L. Pruitt is active.

Publication


Featured researches published by Beth L. Pruitt.


Proceedings of the IEEE | 2009

Review: Semiconductor Piezoresistance for Microsystems

A. Alvin Barlian; Woo-Tae Park; Joseph R. Mallon; Ali J. Rastegar; Beth L. Pruitt

Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.


Proceedings of the National Academy of Sciences of the United States of America | 2012

E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch

Nicolas Borghi; Maria Sorokina; Olga G. Shcherbakova; William I. Weis; Beth L. Pruitt; W. James Nelson; Alexander R. Dunn

Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.


Journal of Micromechanics and Microengineering | 2009

Modeling and Characterization of Electrostatic Comb-drive Actuators in Conducting Liquid Media

Vikram Mukundan; Pierre Ponce; Holly E. Butterfield; Beth L. Pruitt

Operation of electrostatic actuators in liquid media has various proposed applications, especially in biological environments. The devices are operated by modulating at a frequency higher than the relaxation rate of the ions in solution. We present circuit models based on electric double layer theories to obtain analytical expression for the frequency-dependent force response of electrostatic actuators in ionic media. The model has been compared with experimental measurements of actuation in media of conductivity spanning five orders of magnitude. Further, impedance spectroscopy is used to measure the values of the circuit models, which are compared with the experiments. These measurements also quantify the parasitic impedances in the devices. A conformal layer of Parylene-C is demonstrated as a passivation scheme for the electrodes in corrosive media. The heating effects due to parasitic impedances are also quantified by temperature measurements of devices in fluids.


Journal of Neurophysiology | 2008

Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior

Shawn R. Lockery; Kristy J. Lawton; Joseph C. Doll; Serge Faumont; Sarah M. Coulthard; Tod R. Thiele; Nikolaos Chronis; Katherine E McCormick; Miriam B. Goodman; Beth L. Pruitt

With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organisms natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.


Science | 2015

Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry

Blair W. Benham-Pyle; Beth L. Pruitt; W. James Nelson

Stretching cell sheets promotes proliferation Mechanical strain regulates the development, organization, and function of multicellular tissues. But how? Cadherins mechanically couple neighboring epithelial cells through extracellular interactions and sequester the transcription factors β-catenin and Yap1. To find out more, Benham-Pyle et al. stretched epithelial cell sheets. This mechanical strain induced rapid cell cycle reentry, DNA synthesis by sequential nuclear accumulation, and transcriptional activation of Yap1 and β-catenin. Thus, cell-cell junctions are mechanically responsive structural scaffolds providing signaling centers that coordinate transcriptional responses to externally applied force. Science, this issue p. 1024 Pulling on cell sheets encourages the cells to reenter the cell cycle. Mechanical strain regulates the development, organization, and function of multicellular tissues, but mechanisms linking mechanical strain and cell-cell junction proteins to cellular responses are poorly understood. Here, we showed that mechanical strain applied to quiescent epithelial cells induced rapid cell cycle reentry, mediated by independent nuclear accumulation and transcriptional activity of first Yap1 and then β-catenin. Inhibition of Yap1- and β-catenin–mediated transcription blocked cell cycle reentry and progression through G1 into S phase, respectively. Maintenance of quiescence, Yap1 nuclear exclusion, and β-catenin transcriptional responses to mechanical strain required E-cadherin extracellular engagement. Thus, activation of Yap1 and β-catenin may represent a master regulator of mechanical strain–induced cell proliferation, and cadherins provide signaling centers required for cellular responses to externally applied force.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Analysis of nematode mechanics by piezoresistive displacement clamp

Sung-Jin Park; Miriam B. Goodman; Beth L. Pruitt

Studying animal mechanics is critical for understanding how signals in the neuromuscular system give rise to behavior and how force-sensing organs and sensory neurons work. Few techniques exist to provide forces and displacements appropriate for such studies. To address this technological gap, we developed a metrology using piezoresistive cantilevers as force–displacement sensors coupled to a feedback system to apply and maintain defined load profiles to micrometer-scale animals. We show that this system can deliver forces between 10−8 and 10−3 N across distances of up to 100 μm with a resolution of 12 nN between 0.1 Hz and 100 kHz. We use this new metrology to show that force–displacement curves of wild-type nematodes (Caenorhabditis elegans) are linear. Because nematodes have approximately cylindrical bodies, this finding demonstrates that nematode body mechanics can be modeled as a cylindrical shell under pressure. Little is known about the relative importance of hydrostatic pressure and shell mechanics, however. We show that dissipating pressure by cuticle puncture or decreasing it by hyperosmotic shock has only a modest effect on stiffness, whereas defects in the dpy-5 and lon-2 genes, which alter body shape and cuticle proteins, decrease and increase stiffness by 25% and 50%, respectively. This initial analysis of C. elegans body mechanics suggests that shell mechanics dominates stiffness and is a first step in understanding how body mechanics affect locomotion and force sensing.


International Journal of Cell Biology | 2012

Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells.

Laurie B. Hazeltine; Chelsey S. Simmons; Max R. Salick; Xiaojun Lian; Mehmet G. Badur; Wenqing Han; Stephanie M. Delgado; Tetsuro Wakatsuki; Wendy C. Crone; Beth L. Pruitt; Sean P. Palecek

Human pluripotent stem cell (hPSC-) derived cardiomyocytes have potential applications in drug discovery, toxicity testing, developmental studies, and regenerative medicine. Before these cells can be reliably utilized, characterization of their functionality is required to establish their similarity to native cardiomyocytes. We tracked fluorescent beads embedded in 4.4–99.7 kPa polyacrylamide hydrogels beneath contracting neonatal rat cardiomyocytes and cardiomyocytes generated from hPSCs via growth-factor-induced directed differentiation to measure contractile output in response to changes in substrate mechanics. Contraction stress was determined using traction force microscopy, and morphology was characterized by immunocytochemistry for α-actinin and subsequent image analysis. We found that contraction stress of all types of cardiomyocytes increased with substrate stiffness. This effect was not linked to beating rate or morphology. We demonstrated that hPSC-derived cardiomyocyte contractility responded appropriately to isoprenaline and remained stable in culture over a period of 2 months. This study demonstrates that hPSC-derived cardiomyocytes have appropriate functional responses to substrate stiffness and to a pharmaceutical agent, which motivates their use in further applications such as drug evaluation and cardiac therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness.

Alexandre J.S. Ribeiro; Yen-Sin Ang; Ji-Dong Fu; Renee N. Rivas; Tamer M.A. Mohamed; G. Higgs; Deepak Srivastava; Beth L. Pruitt

Significance Human cardiomyocytes differentiated from pluripotent stem cells (hPSC-CMs) have potential as in vitro models of cardiac health and disease but differ from mature cardiomyocytes. In single live engineered hPSC-CMs with physiological shapes, we assayed the mechanical output and activity of sarcomeres and myofibrils in a nondestructive, noninvasive manner. Substrates with physiological stiffness improved contractile activity of patterned hPSC-CMs, as well as calcium flow, mitochondrial organization, electrophysiology, and transverse-tubule formation. The mechanical output and activity of sarcomeres and myofibrils varied as a function of mechanical cues and disrupted cell tension. This study establishes a high-throughput platform for modeling single-cell cardiac contractile activity and yields insight into environmental factors that drive maturation and sarcomere function in hPSC-CMs. Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm2 rectangles with length:width aspect ratios of 5:1–7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.


Journal of Applied Physics | 2009

Design optimization of piezoresistive cantilevers for force sensing in air and water

Joseph C. Doll; Sung-Jin Park; Beth L. Pruitt

Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems.


IEEE\/ASME Journal of Microelectromechanical Systems | 2004

Measurement system for low force and small displacement contacts

Beth L. Pruitt; Woo-Tae Park; Thomas W. Kenny

To support the continued miniaturization of electrical contacts in multichip systems, three-dimensional (3-D) systems, wafer probe cards, and MEMS relays, there is a need for combined measurements of electrical and mechanical phenomena during contact formation. We have carried out a study of electrical contacts in the nN-mN force range for future generation probe cards and novel electronic packaging. One critical phenomenon in the contact formation process is nm-scale deformation of the material layers. To directly study this contact displacement, we have designed a measurement system comprised of a piezoresistive cantilever and an optical interferometer. Together, this system simultaneously measures contact resistance (mOhm to kOhm), force (nN to mN), and displacement (nm-/spl mu/m). These measurements allow the first direct observation of contact mechanical behavior in this important application range. These measurements show that asperities at the contact surface dominate the behavior of the contacts, causing deviations from the Hertzian model of elastic contacts. This paper describes the design and construction of this apparatus, and the operation in a contact mechanics experiment.

Collaboration


Dive into the Beth L. Pruitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge