Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bethany A. Carboneau is active.

Publication


Featured researches published by Bethany A. Carboneau.


Ageing Research Reviews | 2012

Of mice and men: the benefits of caloric restriction, exercise, and mimetics.

Evi M. Mercken; Bethany A. Carboneau; Susan M. Krzysik-Walker; Rafael de Cabo

During aging there is an increasing imbalance of energy intake and expenditure resulting in obesity, frailty, and metabolic disorders. For decades, research has shown that caloric restriction (CR) and exercise can postpone detrimental aspects of aging. These two interventions invoke a similar physiological signature involving pathways associated with stress responses and mitochondrial homeostasis. Nonetheless, CR is able to delay aging processes that result in an increase of both mean and maximum lifespan, whereas exercise primarily increases healthspan. Due to the strict dietary regime necessary to achieve the beneficial effects of CR, most studies to date have focused on rodents and non-human primates. As a consequence, there is vast interest in the development of compounds such as resveratrol, metformin and rapamycin that would activate the same metabolic- and stress-response pathways induced by these interventions without actually restricting caloric intake. Therefore the scope of this review is to (i) describe the benefits of CR and exercise in healthy individuals, (ii) discuss the role of these interventions in the diseased state, and (iii) examine some of the promising pharmacological alternatives such as CR- and exercise-mimetics.


American Journal of Physiology-endocrinology and Metabolism | 2015

High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice

Rockann E. Mosser; Matthew F. Maulis; Valentine S. Moullé; Jennifer C. Dunn; Bethany A. Carboneau; Kavin Arasi; Kirk L. Pappan; Vincent Poitout; Maureen Gannon

Both short- (1 wk) and long-term (2-12 mo) high-fat diet (HFD) studies reveal enhanced β-cell mass due to increased β-cell proliferation. β-Cell proliferation following HFD has been postulated to occur in response to insulin resistance; however, whether HFD can induce β-cell proliferation independent of insulin resistance has been controversial. To examine the kinetics of HFD-induced β-cell proliferation and its correlation with insulin resistance, we placed 8-wk-old male C57Bl/6J mice on HFD for different lengths of time and assayed the following: glucose tolerance, insulin secretion in response to glucose, insulin tolerance, β-cell mass, and β-cell proliferation. We found that β-cell proliferation was significantly increased after only 3 days of HFD feeding, weeks before an increase in β-cell mass or peripheral insulin resistance was detected. These results were confirmed by hyperinsulinemic euglycemic clamps and measurements of α-hydroxybutyrate, a plasma biomarker of insulin resistance in humans. An increase in expression of key islet-proliferative genes was found in isolated islets from 1-wk HFD-fed mice compared with chow diet (CD)-fed mice. These data indicate that short-term HFD feeding enhances β-cell proliferation before insulin resistance becomes apparent.


Endocrinology | 2016

The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice

Ryan P. Ceddia; Daekee Lee; Matthew F. Maulis; Bethany A. Carboneau; David W. Threadgill; Greg Poffenberger; Ginger L. Milne; Kelli L. Boyd; Alvin C. Powers; Owen P. McGuinness; Maureen Gannon; Richard M. Breyer

Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance.


Physiological Reports | 2016

Unexpected effects of the MIP‐CreER transgene and tamoxifen on β‐cell growth in C57Bl6/J male mice

Bethany A. Carboneau; Thao D. V. Le; Jennifer C. Dunn; Maureen Gannon

Transgenic mouse models have been fundamental in the discovery of factors that regulate β‐cell development, mass, and function. Several groups have recently shown that some of these models display previously uncharacterized phenotypes due to the transgenic system itself. These include impaired islet function and increased β‐cell mass due to the presence of a human growth hormone (hGH) minigene as well as impaired β‐cell proliferation in response to tamoxifen (TM) administration. We aimed to determine how these systems impact β‐cell mass and proliferation during high fat diet (HFD). To this end, we utilized C57Bl6/J male MIP‐CreER mice, which are known to express hGH, or wild‐type (WT) mice treated with vehicle corn oil or TM. In the absence of TM, MIP‐CreER mice fed a chow diet have increased β‐cell mass due to hypertrophy, whereas replication is unchanged. Similarly, after 1 week on HFD, MIP‐CreER mice have increased β‐cell mass compared to WT, and this is due to hypertrophy rather than increased proliferation. To assess the impact of TM on β‐cell proliferation and mass, WT mice were treated with vehicle corn oil or TM and then fed a chow diet or HFD for 3 days. We observed that TM‐treated mice have improved glucose homeostasis on chow diet but impaired β‐cell proliferation in response to 3 days HFD feeding. These results unveil additional complications associated with commonly used pancreas‐specific mouse models.


Scientific Reports | 2016

Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival.

Stephanie R. Villa; Medha Priyadarshini; Miles Fuller; Tanya Bhardwaj; Michael R. Brodsky; Anthony R. Angueira; Rockann E. Mosser; Bethany A. Carboneau; Sarah A. Tersey; Helena Mancebo; Annette Gilchrist; Raghavendra G. Mirmira; Maureen Gannon; Brian T. Layden

The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation.


Oncogene | 2016

Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif

Lance R. Thomas; Audra M. Foshage; April M. Weissmiller; Tessa M. Popay; Brian C. Grieb; Susan J. Qualls; Victoria H. Ng; Bethany A. Carboneau; Shelly L. Lorey; Christine M. Eischen; William P. Tansey

The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein–protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.


npj Aging and Mechanisms of Disease | 2017

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging

Evi M. Mercken; Miriam Capri; Bethany A. Carboneau; Maria Conte; Juliana Heidler; Aurelia Santoro; Alejandro Martin-Montalvo; Marta Gonzalez-Freire; Husam Khraiwesh; José A. González-Reyes; Ruin Moaddel; Yongqing Zhang; Kevin G. Becker; José M. Villalba; Julie A. Mattison; Ilka Wittig; Claudio Franceschi; Rafael de Cabo

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.Conserved and unique aging regulatory pathwaysAging is a complex phenomenon involving functional declines in multiple physiological systems with the passage of time. Focusing on skeletal muscle, a group of international scientists identified pathways involved in healthspan and by determining global gene expression profiles across species they exposed common mechanisms fundamental to the aging process. Their experimental design involved comparative analysis of mice, rats, rhesus monkeys and humans, targeting three key time points during their respective lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species in an age-influenced manner. The identification of conserved pathways reveals molecular mechanisms intrinsic to health and survival, whereas the unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.


Molecular metabolism | 2017

Opposing effects of prostaglandin E2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation

Bethany A. Carboneau; Jack Allan; Shannon E. Townsend; Michelle E. Kimple; Richard M. Breyer; Maureen Gannon

Objective Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectively. We previously found that EP3 and EP4 expression are reciprocally regulated by activation of the FoxM1 transcription factor, which promotes β-cell proliferation and survival. Our goal was to determine if EP3 and EP4 regulate β-cell proliferation and survival and, if so, to elucidate the downstream signaling mechanisms. Methods β-cell proliferation was assessed in mouse and human islets ex vivo treated with selective agonists and antagonists for EP3 (sulprostone and DG-041, respectively) and EP4 (CAY10598 and L-161,982, respectively). β-cell survival was measured in mouse and human islets treated with the EP3- and EP4-selective ligands in conjunction with a cytokine cocktail to induce cell death. Changes in gene expression and protein phosphorylation were analyzed in response to modulation of EP3 and EP4 activity in mouse islets. Results Blockade of EP3 enhanced β-cell proliferation in young, but not old, mouse islets in part through phospholipase C (PLC)-γ1 activity. Blocking EP3 also increased human β-cell proliferation. EP4 modulation had no effect on ex vivo proliferation alone. However, blockade of EP3 in combination with activation of EP4 enhanced human, but not mouse, β-cell proliferation. In both mouse and human islets, EP3 blockade or EP4 activation enhanced β-cell survival in the presence of cytokines. EP4 acts in a protein kinase A (PKA)-dependent manner to increase mouse β-cell survival. In addition, the positive effects of FoxM1 activation on β-cell survival are inhibited by EP3 and dependent on EP4 signaling. Conclusions Our results identify EP3 and EP4 as novel regulators of β-cell proliferation and survival in mouse and human islets ex vivo.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2018

Benefits of Caloric Restriction in Longevity and Chemical-Induced Tumorigenesis Are Transmitted Independent of NQO1

Alberto Diaz-Ruiz; Andrea Di Francesco; Bethany A. Carboneau; Sophia R Levan; Kevin J. Pearson; Nathan L. Price; Theresa M. Ward; Michel Bernier; Rafael de Cabo; Evi M. Mercken

Caloric restriction (CR) is the most potent nonpharmacological intervention known to both protect against carcinogenesis and delay aging in laboratory animals. There is a growing number of anticarcinogens and CR mimetics that activate NAD(P)H:quinone oxidoreductase 1 (NQO1). We have previously shown that NQO1, an antioxidant enzyme that acts as an energy sensor through modulation of intracellular redox and metabolic state, is upregulated by CR. Here, we used NQO1-knockout (KO) mice to investigate the role of NQO1 in both the aging process and tumor susceptibility, specifically in the context of CR. We found that NQO1 is not essential for the beneficial effects of CR on glucose homeostasis, physical performance, metabolic flexibility, life-span extension, and (unlike our previously observation with Nrf2) chemical-induced tumorigenesis.


American Journal of Physiology-endocrinology and Metabolism | 2018

Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability

Peter A. Kropp; Jennifer C. Dunn; Bethany A. Carboneau; Doris A. Stoffers; Maureen Gannon

The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

Collaboration


Dive into the Bethany A. Carboneau's collaboration.

Top Co-Authors

Avatar

Maureen Gannon

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Evi M. Mercken

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael de Cabo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge