Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bettina Schmid is active.

Publication


Featured researches published by Bettina Schmid.


Science | 2013

The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS

Kohji Mori; Shih-Ming Weng; Thomas Arzberger; Stephanie May; Kristin Rentzsch; Elisabeth Kremmer; Bettina Schmid; Hans A. Kretzschmar; Marc Cruts; Christine Van Broeckhoven; Christian Haass; Dieter Edbauer

Unusual Aggregates Several recent papers have revealed the unexpected genetic and pathological overlap between frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The most common genetic cause is the GGGGCC hexanucleotide repeat expansion upstream of the C9orf72 coding region affecting about 10% of all patients. It is currently unknown how repeat expansion might lead to neurodegeneration. C9orf72 patients show two distinct types of ubiquitinated inclusions in the central nervous system, one of which was identified as phosphorylated TDP-43 protein. However, all inclusions in the cerebellum and most inclusions in the hippocampus and neocortex lack TDP-43, and the actual disease protein is unknown. Mori et al. (p. 1335, published online 7 February; see the Perspective by Taylor) discovered that most of these characteristic inclusions contain poly-(Gly-Ala) and, to a lesser extent, poly-(Gly-Pro) and poly-(Gly-Arg) dipeptide-repeat proteins that are generated by non-ATG–initiated translation from the expanded GGGGCC repeats in three reading frames. The findings yield mechanistic insight into the pathogenesis of FTLD/ALS with C9orf72 repeat expansions and directly link this common mutation to the characteristic pathology. A new class of proteins links a common genetic mutation to the predominant pathology in certain neurodegenerative diseases. [Also see Perspective by Taylor] Expansion of a GGGGCC hexanucleotide repeat upstream of the C9orf72 coding region is the most common cause of familial frontotemporal lobar degeneration and amyotrophic lateral sclerosis (FTLD/ALS), but the pathomechanisms involved are unknown. As in other FTLD/ALS variants, characteristic intracellular inclusions of misfolded proteins define C9orf72 pathology, but the core proteins of the majority of inclusions are still unknown. Here, we found that most of these characteristic inclusions contain poly-(Gly-Ala) and, to a lesser extent, poly-(Gly-Pro) and poly-(Gly-Arg) dipeptide-repeat proteins presumably generated by non-ATG–initiated translation from the expanded GGGGCC repeat in three reading frames. These findings directly link the FTLD/ALS-associated genetic mutation to the predominant pathology in patients with C9orf72 hexanucleotide expansion.


The Journal of Neuroscience | 2007

Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin

Nicole Exner; Bettina Treske; Dominik Paquet; Kira M. Holmström; Carola Schiesling; Suzana Gispert; Iria Carballo-Carbajal; Daniela Berg; Hans-Hermann Hoepken; Thomas Gasser; Rejko Krüger; Konstanze F. Winklhofer; Frank Vogel; Andreas S. Reichert; Georg Auburger; Philipp J. Kahle; Bettina Schmid; Christian Haass

Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinsons disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recent evidence points to a number of genes involved in familial variants of PD. Among them, a loss-of-function of phosphatase and tensin homolog-induced kinase 1 (PINK1; PARK6) is associated with rare cases of autosomal recessive parkinsonism. In HeLa cells, RNA interference-mediated downregulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Morphological changes of mitochondria can be rescued by expression of wild-type PINK1 but not by PD-associated PINK1 mutants. Moreover, primary cells derived from patients with two different PINK1 mutants showed a similar defect in mitochondrial morphology. Human parkin but not PD-associated mutants could rescue mitochondrial pathology in human cells like wild-type PINK1. Our results may therefore suggest that PINK1 deficiency in humans results in mitochondrial abnormalities associated with cellular stress, a pathological phenotype, which can be ameliorated by enhanced expression of parkin.


The EMBO Journal | 2010

ALS‐associated fused in sarcoma ( FUS ) mutations disrupt Transportin‐mediated nuclear import

Dorothee Dormann; Ramona Rodde; Dieter Edbauer; Eva Bentmann; Ingeborg Fischer; Alexander Hruscha; Manuel E Than; Ian R. A. Mackenzie; Anja Capell; Bettina Schmid; Manuela Neumann; Christian Haass

Mutations in fused in sarcoma (FUS) are a cause of familial amyotrophic lateral sclerosis (fALS). Patients carrying point mutations in the C‐terminus of FUS show neuronal cytoplasmic FUS‐positive inclusions, whereas in healthy controls, FUS is predominantly nuclear. Cytoplasmic FUS inclusions have also been identified in a subset of frontotemporal lobar degeneration (FTLD‐FUS). We show that a non‐classical PY nuclear localization signal (NLS) in the C‐terminus of FUS is necessary for nuclear import. The majority of fALS‐associated mutations occur within the NLS and impair nuclear import to a degree that correlates with the age of disease onset. This presents the first case of disease‐causing mutations within a PY‐NLS. Nuclear import of FUS is dependent on Transportin, and interference with this transport pathway leads to cytoplasmic redistribution and recruitment of FUS into stress granules. Moreover, proteins known to be stress granule markers co‐deposit with inclusions in fALS and FTLD‐FUS patients, implicating stress granule formation in the pathogenesis of these diseases. We propose that two pathological hits, namely nuclear import defects and cellular stress, are involved in the pathogenesis of FUS‐opathies.


Development | 2013

Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish

Alexander Hruscha; Peter Krawitz; Alexandra Rechenberg; Verena Heinrich; Jochen Hecht; Christian Haass; Bettina Schmid

Gene modifications in animal models have been greatly facilitated through the application of targeted genome editing tools. The prokaryotic CRISPR/Cas9 type II genome editing system has recently been applied in cell lines and vertebrates. However, we still have very limited information about the efficiency of mutagenesis, germline transmission rates and off-target effects in genomes of model organisms. We now demonstrate that CRISPR/Cas9 mutagenesis in zebrafish is highly efficient, reaching up to 86.0%, and is heritable. The efficiency of the CRISPR/Cas9 system further facilitated the targeted knock-in of a protein tag provided by a donor oligonucleotide with knock-in efficiencies of 3.5-15.6%. Mutation rates at potential off-target sites are only 1.1-2.5%, demonstrating the specificity of the CRISPR/Cas9 system. The ease and efficiency of the CRISPR/Cas9 system with limited off-target effects make it a powerful genome engineering tool for in vivo studies.


Journal of Clinical Investigation | 2009

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation

Dominik Paquet; Ratan Bhat; Astrid Sydow; Eva-Maria Mandelkow; Stefan Berg; Sven Hellberg; Johanna Fälting; Martin Distel; Reinhard W. Köster; Bettina Schmid; Christian Haass

Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3beta (GSK3beta). We identified a newly developed highly active GSK3beta inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.


Journal of Biological Chemistry | 2008

Missense Mutations in the Progranulin Gene Linked to Frontotemporal Lobar Degeneration with Ubiquitin-immunoreactive Inclusions Reduce Progranulin Production and Secretion

Sunita S. Shankaran; Anja Capell; Alexander Hruscha; Katrin Fellerer; Manuela Neumann; Bettina Schmid; Christian Haass

Loss of function mutations in progranulin cause tau-negative frontotemporal lobar degeneration with ubiquitin-positive inclusions. A major protein component of these inclusions is TDP-43, which becomes hyperphosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments, which apparently translocate from nuclei to the cytoplasm. Most progranulin mutations are nonsense mutations resulting in nonsense-mediated mRNA decay and consequently reduced progranulin protein levels. However, some missense mutations are described that occur within the signal sequence and mature progranulin. We now demonstrate that a progranulin mutation located within the signal sequence (PGRN A9D) results in cytoplasmic missorting with extremely low expression. In contrast, two other progranulin mutations (PGRN P248L and R432C) are expressed as immature proteins but are inefficiently transported through and partially degraded within the secretory pathway, resulting in a significantly reduced secretion. Thus apparently all progranulin mutations cause reduced protein expression or secretion, although by different cellular mechanisms. To investigate a putative relationship between reduced expression of progranulin and TDP-43 relocalization and deposition, we down-regulated progranulin in human cell lines and in zebrafish. Upon reduction of progranulin, neither a major redistribution of TDP-43 nor proteolytic processing to disease-characterizing C-terminal fragments could be observed.


Mechanisms of Development | 1996

A GRADIENT OF CYTOPLASMIC CACTUS DEGRADATION ESTABLISHES THE NUCLEAR LOCALIZATION GRADIENT OF THE DORSAL MORPHOGEN IN DROSOPHILA

Andreas Bergmann; David Stein; Robert Geisler; Susanne Hagenmaier; Bettina Schmid; Nielsen Q. Fernandez; Beate Schnell; Christiane Nüsslein-Volhard

Dorsoventral axis formation in the Drosophila embryo is established by a signal transduction pathway that comprises the products of at least 12 maternal genes. Two of these genes, dorsal and cactus, show homology to the mammalian transcription factor NF-kappa B and its inhibitor I kappa B, respectively. As in the case for I kappa B and NF-kappa B, Cactus inhibits Dorsal by retaining it in the cytoplasm. In response to the signal produced and transmitted by the products of the other genes, Dorsal translocates to the nucleus preferentially on the ventral side of the embryo. Here, we show that Cactus forms a cytoplasmic concentration gradient inversely correlated to the nuclear translocation gradient of Dorsal. Deletions of the N-terminus and C-terminus of Cactus reveal that two modes of degradation control cactus activity: signal-induced degradation and signal-independent degradation, respectively. Genetic evidence indicates that degradation of Cactus is required, but not sufficient to translocates Dorsal completely into the nucleus.


Nature Neuroscience | 2016

DNA methylation changes in plasticity genes accompany the formation and maintenance of memory

Rashi Halder; Magali Hennion; Ramon Vidal; Orr Shomroni; Raza-Ur Rahman; Ashish Rajput; Tonatiuh Pena Centeno; Frauke van Bebber; Vincenzo Capece; Julio C. Garcia Vizcaino; Anna-Lena Schuetz; Susanne Burkhardt; Eva Benito; Magdalena Navarro Sala; Sanaz Bahari Javan; Christian Haass; Bettina Schmid; Andre Fischer; Stefan Bonn

The ability to form memories is a prerequisite for an organisms behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring.


The Journal of Neuroscience | 2013

Dual Cleavage of Neuregulin 1 Type III by BACE1 and ADAM17 Liberates Its EGF-Like Domain and Allows Paracrine Signaling

Daniel Fleck; Frauke van Bebber; Alessio Colombo; Chiara Galante; Benjamin M. Schwenk; Linnéa Rabe; Heike Hampel; Bozidar Novak; Elisabeth Kremmer; Sabina Tahirovic; Dieter Edbauer; Stefan F. Lichtenthaler; Bettina Schmid; Michael Willem; Christian Haass

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimers disease because they are also involved in the proteolytic generation of the neurotoxic amyloid β-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.


Journal of Biological Chemistry | 2005

Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3.

Peter Krawitz; Christof Haffner; Regina Fluhrer; Harald Steiner; Bettina Schmid; Christian Haass

Signal peptide peptidase (SPP) is an unusual aspartyl protease that mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the γ-secretase complex, SPP contains a critical GXGD motif in its C-terminal catalytic center. Although SPP is known to be an aspartyl protease of the GXGD type, several presenilin homologues/SPP-like proteins (PSHs/SPPL) of unknown function have been identified by data base searches. We now investigated the subcellular localization and a putative proteolytic activity of PSHs/SPPLs in cultured cells and in an in vivo model. We demonstrate that SPPL2b is targeted through the secretory pathway to endosomes/lysosomes, whereas SPP and SPPL3 are restricted to the ER. As suggested by the differential subcellular localization of SPPL2b compared with SPP and SPPL3, we found distinct phenotypes upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutations of the putative C-terminal active sites of spp, sppl2, and sppl3 produced phenocopies of the respective knockdown phenotypes. Thus, our data suggest that all investigated PSHs/SPPLs are members of the novel family of GXGD aspartyl proteases. Furthermore, SPPL2b is shown to be the first member of the SPP/PSH/SPPL family that is not located within the ER but in endosomal/lysosomal vesicles.

Collaboration


Dive into the Bettina Schmid's collaboration.

Top Co-Authors

Avatar

Alexander Hruscha

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Frauke van Bebber

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Dieter Edbauer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Kremmer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Mary C. Mullins

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Wenninger-Weinzierl

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Eva-Maria Mandelkow

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge