Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bettina Tippler is active.

Publication


Featured researches published by Bettina Tippler.


Retrovirology | 2005

Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides.

Lars Steinstraesser; Bettina Tippler; Janine Mertens; Evert N. Lamme; H.-H. Homann; Marcus Lehnhardt; Oliver Wildner; Hans-Ulrich Steinau; Klaus Überla

BackgroundThe antibacterial activity of host defense peptides (HDP) is largely mediated by permeabilization of bacterial membranes. The lipid membrane of enveloped viruses might also be a target of antimicrobial peptides. Therefore, we screened a panel of naturally occurring HDPs representing different classes for inhibition of early, Env-independent steps in the HIV replication cycle. A lentiviral vector-based screening assay was used to determine the inhibitory effect of HDPs on early steps in the replication cycle and on cell metabolism.ResultsHuman LL37 and porcine Protegrin-1 specifically reduced lentiviral vector infectivity, whereas the reduction of luciferase activities observed at high concentrations of the other HDPs is primarily due to modulation of cellular activity and/ or cytotoxicity rather than antiviral activity. A retroviral vector was inhibited by LL37 and Protegrin-1 to similar extent, while no specific inhibition of adenoviral vector mediated gene transfer was observed. Specific inhibitory effects of Protegrin-1 were confirmed for wild type HIV-1.ConclusionAlthough Protegrin-1 apparently inhibits an early step in the HIV-replication cycle, cytotoxic effects might limit its use as an antiviral agent unless the specificity for the virus can be improved.


Journal of Virology | 2009

Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus

Rebekka Kohlmann; Sarah Schwannecke; Bettina Tippler; Nicola Ternette; Vladimir Temchura; Matthias Tenbusch; Klaus Überla; Thomas Grunwald

ABSTRACT Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.


Vaccine | 2008

Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus

Vladimir Temchura; Matthias Tenbusch; Godwin Nchinda; Ghulam Nabi; Bettina Tippler; Maryna Zelenyuk; Oliver Wildner; Klaus Überla; Seraphin Kuate

Abstract Exosomes have been proposed as candidates for therapeutic immunization. The present study demonstrates that incorporation of the G protein of vesicular stomatitis virus (VSV-G) into exosome-like vesicles (ELVs) enhances their uptake and induces the maturation of dendritic cells. Targeting of VSV-G and ovalbumin as a model antigen to the same ELVs increased the cross-presentation of ovalbumin via an endosomal acidification mechanism. Immunization of mice with VSV-G and ovalbumin containing ELVs led to an increased IgG2a antibody response, expansion of antigen-specific CD8 T cells, strong in vivo CTL responses, and protection from challenge with ovalbumin expressing tumor cells. Thus, incorporation of VSV-G and targeting of antigens to ELVs are attractive strategies to improve exosomal vaccines.


Brain Research | 1990

Cysteinyl-leukotriene production during limbic seizures triggered by kainic acid

Thomas Simmet; Bettina Tippler

In rats kainic acid-induced seizures were accompanied by time-dependent cerebral cysteinyl-leukotriene (LT) and prostaglandin (PG) F2 alpha formation. Cysteinyl-LT were identified in the rat brain tissue extracts by their immunoreactive properties and their retention times upon reversed phase HPLC profiling. In perfused blood-free brain tissue contents of LTC4-like material were significantly elevated in cortex, hippocampus, midbrain and hypothalamus at 3 h after kainic acid injection. PGF2 alpha tissue contents were significantly elevated in all brain areas studied with very large amounts in the hippocampus and smaller amounts in the cortex. The cyclooxygenase inhibitor indomethacin significantly inhibited formation of PGF2 alpha in whole brain tissue while leaving unaffected the production of cysteinyl-LT. A dose of indomethacin which nearly completely inhibited cyclooxygenase activity as monitored by cerebral PGF2 alpha contents also tended to aggravate behavioral changes and significantly increased the mortality. Phenidone, a lipoxygenase inhibitor, significantly and dose-dependently inhibited formation of cysteinyl-LT but did not significantly affect PGF2 alpha formation. Seizure activity tended to be attenuated by a higher dose of this compound. Dexamethasone which supposedly inhibits phospholipase A2 activity by induction of lipocortins, did not significantly reduce either cysteinyl-LT or PGF2 alpha biosynthesis. Flunarizine, trifluoperazine and diazepines protected a certain percentage of animals from kainic acid-induced seizures. In rats in which seizures occurred in spite of pretreatment with these compounds, the eicosanoid formation was not inhibited but in the case of flunarizine was even found to be somewhat enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)


BMC Immunology | 2008

Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity

Matthias Tenbusch; Seraphin Kuate; Bettina Tippler; Nicole Gerlach; Simone Schimmer; Ulf Dittmer; Klaus Überla

BackgroundGranulocyte-macrophage colony-stimulating factor (GM-CSF) has shown promising results as a cytokine adjuvant for antiviral vaccines and in various models of tumor gene therapy. To explore whether the targeting of antigens to GM-CSF receptors on antigen-presenting cells enhances antigen-specific CD8 T-cell responses, fusion proteins of GM-CSF and ovalbumin (OVA) were expressed by DNA and adenoviral vector vaccines. In addition, bicistronic vectors allowing independent expression of the antigen and the cytokine were tested in parallel.ResultsIn vitro, the GM-CSF ovalbumin fusion protein (GM-OVA) led to the better stimulation of OVA-specific CD8+ T cells by antigen-presenting cells than OVA and GM-CSF given as two separate proteins. However, prime-boost immunizations of mice with DNA and adenoviral vector vaccines encoding GM-OVA suppressed CD8+ T-cell responses to OVA. OVA-specific IgG2a antibody levels were also reduced, while the IgG1 antibody response was enhanced. Suppression of CD8+ T cell responses by GM-OVA vaccines was associated with the induction of neutralizing antibodies to GM-CSF. In contrast, the coexpression of GM-CSF and antigens in DNA prime adenoviral boost immunizations led to a striking expansion of polyfunctional OVA-specific CD8+ T cells without the induction of autoantibodies.ConclusionThe induction of autoantibodies suggests a general note of caution regarding the use of highly immunogenic viral vector vaccines encoding fusion proteins between antigens and host proteins. In contrast, the expansion of polyfunctional OVA-specific CD8+ T cells after immunizations with bicistronic vectors further support a potential application of GM-CSF as an adjuvant for heterologous prime-boost regimens with genetic vaccines. Since DNA prime adenoviral vector boost regimenes are presently considered as one of the most efficient ways to induce CD8+ T cell responses in mice, non-human primates and humans, further enhancement of this response by GM-CSF is a striking observation.


Journal of Virology | 2012

Risk of Immunodeficiency Virus Infection May Increase with Vaccine-Induced Immune Response

Matthias Tenbusch; Ralf Ignatius; Vladimir Temchura; Ghulam Nabi; Bettina Tippler; Guillaume Stewart-Jones; Andres M. Salazar; Ulrike Sauermann; Christiane Stahl-Hennig; Klaus Überla

ABSTRACT To explore the efficacy of novel complementary prime-boost immunization regimens in a nonhuman primate model for HIV infection, rhesus monkeys primed by different DNA vaccines were boosted with virus-like particles (VLP) and then challenged by repeated low-dose rectal exposure to simian immunodeficiency virus (SIV). Characteristic of the cellular immune response after the VLP booster immunization were high numbers of SIV-specific, gamma interferon-secreting cells after stimulation with inactivated SIV particles, but not SIV peptides, and the absence of detectable levels of CD8+ T cell responses. Antibodies specific to SIV Gag and SIV Env could be induced in all animals, but, consistent with a poor neutralizing activity at the time of challenge, vaccinated monkeys were not protected from acquisition of infection and did not control viremia. Surprisingly, vaccinees with high numbers of SIV-specific, gamma interferon-secreting cells were infected fastest during the repeated low-dose exposures and the numbers of these immune cells in vaccinated macaques correlated with susceptibility to infection. Thus, in the absence of protective antibodies or cytotoxic T cell responses, vaccine-induced immune responses may increase the susceptibility to acquisition of immunodeficiency virus infection. The results are consistent with the hypothesis that virus-specific T helper cells mediate this detrimental effect and contribute to the inefficacy of past HIV vaccination attempts (e.g., STEP study).


Journal of Applied Microbiology | 2005

In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector‐based assay technique

Charles O. Esimone; Thomas Grunwald; Oliver Wildner; Godwin Nchinda; Bettina Tippler; Peter Proksch; Klaus Überla

Aims:  Medicinal plants are increasingly being projected as suitable alternative sources of antiviral agents. The development of a suitable in vitro pharmacodynamic screening technique could contribute to rapid identification of potential bioactive plants and also to the standardization and/or pharmacokinetic–pharmacodynamic profiling of the bioactive components.


Journal of Virology | 2012

Cytoplasmic Utilization of Human Immunodeficiency Virus Type 1 Genomic RNA Is Not Dependent on a Nuclear Interaction with Gag

Bastian Grewe; Bianca Hoffmann; Inga Ohs; Maik Blissenbach; Sabine Brandt; Bettina Tippler; Thomas Grunwald; Klaus Überla

ABSTRACT In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.


Brain Research | 1991

On the relation between cerebral cysteinyl-leukotriene formation and epileptic seizures

Thomas Simmet; Bettina Tippler

In gerbils pentylenetetrazole- or handling-induced seizures were accompanied by cerebral formation of small amounts of cysteinyl-leukotrienes (LT) but large amounts of prostaglandin (PG) F2 alpha. By contrast, in rats injected with pentylenetetrazole or bicuculline very large amounts of PGF2 alpha but no cysteinyl-LT could be detected in the brain tissues. The data indicate that at least in rats the extensive neuronal activity during tonic-clonic convulsions is not necessarily sufficient for the activation of the 5-lipoxygenase pathway. Apparently important species differences do exist.


PLOS ONE | 2013

Protective Efficacy and Immunogenicity of a Combinatory DNA Vaccine against Influenza A Virus and the Respiratory Syncytial Virus

Viktoria Stab; Sandra Nitsche; Thomas Niezold; Michael Storcksdieck genannt Bonsmann; Andrea Wiechers; Bettina Tippler; Drew Hannaman; Christina Ehrhardt; Klaus Überla; Thomas Grunwald; Matthias Tenbusch

The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8+ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

Collaboration


Dive into the Bettina Tippler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghulam Nabi

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge