Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Simmet is active.

Publication


Featured researches published by Thomas Simmet.


ACS Nano | 2011

Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line

Oleg Lunov; Tatiana Syrovets; Cornelia Loos; J. Beil; M. Delecher; Kyrylo Tron; Gerd Ulrich Nienhaus; Anna Musyanovych; Volker Mailänder; Katharina Landfester; Thomas Simmet

Tumor cell lines are often used as models for the study of nanoparticle-cell interactions. Here we demonstrate that carboxy (PS-COOH) and amino functionalized (PS-NH2) polystyrene nanoparticles of ∼100 nm in diameter are internalized by human macrophages, by undifferentiated and by PMA-differentiated monocytic THP-1 cells via diverse mechanisms. The uptake mechanisms also differed for all cell types and particles when analyzed either in buffer or in medium containing human serum. Macrophages internalized ∼4 times more PS-COOH than THP-1 cells, when analyzed in serum-containing medium. By contrast, in either medium, THP-1 cells internalized PS-NH2 more rapidly than macrophages. Using pharmacological and antisense in vitro knockdown approaches, we showed that, in the presence of serum, the specific interaction between the CD64 receptor and the particles determines the macrophage uptake of particles by phagocytosis, whereas particle internalization in THP-1 cells occurred via dynamin II-dependent endocytosis. PMA-differentiated THP-1 cells differed in their uptake mechanism from macrophages and undifferentiated THP-1 cells by internalizing the particles via macropinocytosis. In line with our in vitro data, more intravenously applied PS-COOH particles accumulated in the liver, where macrophages of the reticuloendothelial system reside. By contrast, PS-NH2 particles were preferentially targeted to tumor xenografts grown on the chorioallantoic membrane of fertilized chicken eggs. Our data show that the amount of internalized nanoparticles, the uptake kinetics, and its mechanism may differ considerably between primary cells and a related tumor cell line, whether differentiated or not, and that particle uptake by these cells is critically dependent on particle opsonization by serum proteins.


Redox biology | 2015

NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases

Amna Abderrazak; Tatiana Syrovets; Dominique Couchie; Khadija El Hadri; Bertrand Friguet; Thomas Simmet; Mustapha Rouis

IL-1β production is critically regulated by cytosolic molecular complexes, termed inflammasomes. Different inflammasome complexes have been described to date. While all inflammasomes recognize certain pathogens, it is the distinctive feature of NLRP3 inflammasome to be activated by many and diverse stimuli making NLRP3 the most versatile, and importantly also the most clinically implicated inflammasome. However, NLRP3 activation has remained the most enigmatic. It is not plausible that the intracellular NLRP3 receptor is able to detect all of its many and diverse triggers through direct interactions; instead, it is discussed that NLRP3 is responding to certain generic cellular stress-signals induced by the multitude of molecules that trigger its activation. An ever increasing number of studies link the sensing of cellular stress signals to a direct pathophysiological role of NLRP3 activation in a wide range of autoinflammatory and autoimmune disorders, and thus provide a novel mechanistic rational, on how molecules trigger and support sterile inflammatory diseases. A vast interest has created to unravel how NLRP3 becomes activated, since mechanistic insight is the prerequisite for a knowledge-based development of therapeutic intervention strategies that specifically target the NLRP3 triggered IL-1β production. In this review, we have updated knowledge on NLRP3 inflammasome assembly and activation and on the pyrin domain in NLRP3 that could represent a drug target to treat sterile inflammatory diseases. We have reported mutations in NLRP3 that were found to be associated with certain diseases. In addition, we have reviewed the functional link between NLRP3 inflammasome, the regulator of cellular redox status Trx/TXNIP complex, endoplasmic reticulum stress and the pathogenesis of diseases such as type 2 diabetes. Finally, we have provided data on NLRP3 inflammasome, as a critical regulator involved in the pathogenesis of obesity and cardiovascular diseases.


Antioxidants & Redox Signaling | 2013

The Thioredoxin System as a Therapeutic Target in Human Health and Disease

Dler Faieeq Darweesh Mahmood; Amna Abderrazak; Khadija El Hadri; Thomas Simmet; Mustapha Rouis

The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.


Journal of Biological Chemistry | 2002

The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways.

Ladislav Burysek; Tatiana Syrovets; Thomas Simmet

The mechanism of proinflammatory activation of human monocytes by plasmin is unknown. Here we demonstrate that in human primary monocytes, plasmin stimulates mitogen-activated protein kinase (MAPK) signaling via phosphorylation of MAPK kinase 3/6 (MKK3/6) and p38 MAPK that triggers subsequent DNA binding of transcription factor activator protein-1 (AP-1). The AP-1 complex contained phosphorylated c-Jun and ATF2, and its DNA binding activity was blocked by the p38 MAPK inhibitor SB203580. In addition, plasmin elicits Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, as detected by phosphorylation of JAK1 tyrosine kinase and STAT1 and STAT3 proteins. Plasmin-induced DNA binding of STAT1 and STAT3 was blocked by SB203580 and AG490, inhibitors of p38 MAPK and JAK, respectively, but not by U0126, an inhibitor of MKK1/2. DNA binding of NF-κB remained unaffected by any of these inhibitors. The plasmin-induced signaling led to expression of monocyte chemoattractant protein-1 (MCP-1) and CD40, which required activation of both p38 MAPK and JAK/STAT signaling pathways. Additionally, signaling through both p38 MAPK and JAK is involved in the plasmin-mediated monocyte migration, whereas the formylmethionylleucylphenylalanine-induced chemotaxis remained unaffected. Taken together, our data demonstrate a novel function of the serine protease plasmin in a proinflammatory signaling network.


Cancer Research | 2008

Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo.

Meike Vogler; Henning Walczak; Dominic Stadel; Tobias Haas; Felicitas Genze; Marjana Jovanovic; Jürgen E. Gschwend; Thomas Simmet; Klaus-Michael Debatin; Simone Fulda

Resistance to apoptosis is a hallmark of pancreatic cancer, a leading cause of cancer deaths. Therefore, novel strategies are required to target apoptosis resistance. Here, we report that the combination of X-linked inhibitor of apoptosis (XIAP) inhibition and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective approach to trigger apoptosis despite Bcl-2 overexpression and to suppress pancreatic cancer growth in vitro and in vivo. Knockdown of XIAP by RNA interference cooperates with TRAIL to induce caspase activation, loss of mitochondrial membrane potential, cytochrome c release, and apoptosis in pancreatic carcinoma cells. Loss of mitochondrial membrane potential and cytochrome c release are extensively inhibited by a broad range or caspase-3 selective caspase inhibitor and by RNAi-mediated silencing of caspase-3, indicating that XIAP inhibition enhances TRAIL-induced mitochondrial damage in a caspase-3-dependent manner. XIAP inhibition combined with TRAIL even breaks Bcl-2-imposed resistance by converting type II cells that depend on the mitochondrial contribution to the death receptor pathway to type I cells in which TRAIL-induced activation of caspase-3 and caspase-9 and apoptosis proceeds irrespective of high Bcl-2 levels. Most importantly, XIAP inhibition potentiates TRAIL-induced antitumor activity in two preclinical models of pancreatic cancer in vivo. In the chicken chorioallantoic membrane model, XIAP inhibition significantly enhances TRAIL-mediated apoptosis and suppression of tumor growth. In a tumor regression model in xenograft-bearing mice, XIAP inhibition acts in concert with TRAIL to cause even regression of established pancreatic carcinoma. Thus, this combination of XIAP inhibition plus TRAIL is a promising strategy to overcome apoptosis resistance of pancreatic cancer that warrants further investigation.


Cancer Research | 2009

Small Molecule XIAP Inhibitors Enhance TRAIL-Induced Apoptosis and Antitumor Activity in Preclinical Models of Pancreatic Carcinoma

Meike Vogler; Henning Walczak; Dominic Stadel; Tobias Haas; Felicitas Genze; Marjana Jovanovic; Umesh Bhanot; Cornelia Hasel; Peter Møller; Jürgen E. Gschwend; Thomas Simmet; Klaus-Michael Debatin; Simone Fulda

Evasion of apoptosis is a characteristic feature of pancreatic cancer, a prototypic cancer that is refractory to current treatment approaches. Hence, there is an urgent need to design rational strategies that counter apoptosis resistance. To explore X-linked inhibitor of apoptosis (XIAP) as a therapeutic target in pancreatic cancer, we analyzed the expression of XIAP in pancreatic tumor samples and evaluated the effect of small molecule XIAP inhibitors alone and in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) against pancreatic carcinoma in vitro and in vivo. Here, we report that XIAP is highly expressed in pancreatic adenocarcinoma samples compared with normal pancreatic ducts. Small molecule XIAP inhibitors synergize with TRAIL to induce apoptosis and to inhibit long-term clonogenic survival of pancreatic carcinoma cells. In contrast, they do not reverse the lack of toxicity of TRAIL on nonmalignant cells in vitro or normal tissues in vivo, pointing to a therapeutic index. Most importantly, XIAP inhibitors cooperate with TRAIL to trigger apoptosis and suppress pancreatic carcinoma growth in vivo in two preclinical models, i.e., the chorioallantoic membrane model and a mouse xenograft model. Parallel immunohistochemical analysis of tumor tissue under therapy reveals that the XIAP inhibitor acts in concert with TRAIL to cause caspase-3 activation and apoptosis. In conclusion, our findings provide, for the first time, evidence in vivo that XIAP inhibitors prime pancreatic carcinoma cells for TRAIL-induced apoptosis and potentiate the antitumor activity of TRAIL against established pancreatic carcinoma. These findings build the rationale for further (pre)clinical development of XIAP inhibitors and TRAIL against pancreatic cancer.


Journal of Immunology | 2005

Acetyl-Boswellic Acids Inhibit Lipopolysaccharide-Mediated TNF-α Induction in Monocytes by Direct Interaction with IκB Kinases

Tatiana Syrovets; Christine Krauss; Yves Laumonnier; Thomas Simmet

Expression of proinflammatory cytokines by monocytes is tightly regulated by transcription factors such as NF-κB. In this study, we show that, in LPS-stimulated human peripheral monocytes, the pentacyclic triterpenes acetyl-α-boswellic acid (AαBA) and acetyl-11-keto-β-boswellic acid (AKβBA) down-regulate the TNF-α expression. AαBA and AKβBA inhibited NF-κB signaling both in LPS-stimulated monocytes as detected by EMSA, as well as in a NF-κB-dependent luciferase gene reporter assay. By contrast, the luciferase expression driven by the IFN-stimulated response element was unaffected, implying specificity of the inhibitory effect observed. Both AαBA and AKβBA did not affect binding of recombinant p50/p65 and p50/c-Rel dimers to DNA binding sites as analyzed by surface plasmon resonance. Instead, both pentacyclic triterpenes inhibited the LPS-induced degradation of IκBα, as well as phosphorylation of p65 at Ser536 and its nuclear translocation. AαBA and AKβBA inhibited specifically the phosphorylation of recombinant IκBα and p65 by IκBα kinases (IKKs) immunoprecipitated from LPS-stimulated monocytes. In line with this, AαBA and AKβBA also bound to and inhibited the activities of active human recombinant GST-IKKα and His-IKKβ. The LPS-triggered induction of TNF-α in monocytes is dependent on IKK activity, as confirmed by IKK-specific antisense oligodeoxynucleotides. Thus, via their direct inhibitory effects on IKK, AαBA and AKβBA convey inhibition of NF-κB and subsequent down-regulation of TNF-α expression in activated human monocytes. These findings provide a molecular basis for the anti-inflammatory properties ascribed to AαBA- and AKβBA-containing drugs and suggest acetyl-boswellic acids as tools for the development of novel therapeutic interventions.


Journal of Leukocyte Biology | 2012

Plasmin as a proinflammatory cell activator

Tatiana Syrovets; Oleg Lunov; Thomas Simmet

The serine protease plasmin generated from its zymogen plasminogen is best known for its function as a key enzyme of the fibrinolytic cascade. However, beyond fibrinolysis, plasmin has a number of crucial functions in a variety of processes, including inflammation. Various cells can bind plasminogen and plasmin via plasminogen‐binding sites exposing a C‐terminal lysine. Plasmin, generated as a result of plasminogen activation at the cell surface, is protected from its physiological inhibitors. Apart from its ability to facilitate cell migration in tissues, plasmin is capable of triggering signaling, which depends on cellular binding via its lysine‐binding sites and its proteolytic activity. Plasmin‐induced signaling affects various functions of monocytes, macrophages, DCs, and others, with the list of affected cells still growing. In vitro and in vivo studies have demonstrated the ability of plasmin to stimulate the production of cytokines, ROS, and other mediators, thereby contributing to inflammation. Plasmin‐induced chemotaxis of monocytes and DCs indicates that it is also a potent chemoattractant for immune cells. Therefore, excessive activation of plasmin in chronic inflammatory or autoimmune diseases might exacerbate the activation of inflammatory cells and the pathogenesis of the disease. This review focuses on the available evidence for physiological and pathophysiological roles the serine protease plasmin in inflammatory processes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Antiinflammatory and Antiatherogenic Effects of the NF-κB Inhibitor Acetyl-11-Keto-β-Boswellic Acid in LPS-Challenged ApoE−/− Mice

Clarisse Cuaz-Pérolin; Ludivine Billiet; Eric Baugé; Corinne Copin; Daniel Scott-Algara; Felicitas Genze; Berhold Büchele; Tatiana Syrovets; Thomas Simmet; Mustapha Rouis

Objective—In this article, we studied the effect of acetyl-11-keto-β-boswellic acid (AKβBA), a natural inhibitor of the proinflammatory transcription factor NF-&kgr;B on the development of atherosclerotic lesions in apolipoprotein E–deficient (apoE−/−) mice. Methods and Results—Atherosclerotic lesions were induced by weekly LPS injection in apoE−/− mice. LPS alone increased atherosclerotic lesion size by ≈100%, and treatment with AKβBA significantly reduced it by ≈50%. Moreover, the activity of NF-&kgr;B was also reduced in the atherosclerotic plaques of LPS-injected apoE−/− mice treated with AKβBA. As a consequence, AKβBA treatment led to a significant downregulation of several NF-&kgr;B–dependent genes such as MCP-1, MCP-3, IL-1α, MIP-2, VEGF, and TF. By contrast, AKβBA did not affect the plasma concentrations of triglycerides, total cholesterol, antioxidized LDL antibodies, and various subsets of lymphocyte-derived cytokines. Moreover, AKβBA potently inhibited the I&kgr;B kinase (IKK) activity immunoprecipitated from LPS-stimulated mouse macrophages and mononuclear cells leading to decreased phosphorylation of I&kgr;Bα and inhibition of p65/NF-&kgr;B activation. Comparable AKβBA-mediated inhibition was also observed in LPS-stimulated human macrophages. Conclusion—The inhibition of NF-&kgr;B activity by plant resins from species of the Boswellia family might represent an alternative for classical medicine treatments for chronic inflammatory diseases such as atherosclerosis. (Arterioscler Thromb Vasc Biol. 2008;28:272-277)


British Journal of Pharmacology | 1999

Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices.

Angela Ameri; Alwina Wilhelm; Thomas Simmet

The arachidonic acid derivative arachidonylethanolamide (anandamide) is an endogeneous ligand of cannabinoid receptors that induces pharmacological actions similar to those of cannabinoids such as Δ9‐tetrahydrocannabinol (THC). We examined whether anandamide can influence excessive neuronal activity by investigating stimulation‐induced population spikes and epileptiform activity in rat hippocampal slices. For this purpose, the effects of anandamide were compared with those of the synthetic cannabinoid agonist WIN 55,212‐2 and its inactive S(−)‐enantiomer WIN 55,212‐3. Both anandamide (1 and 10 μM) and WIN 55,212‐2 (0.1 and 1 μM) decreased the amplitude of the postsynaptic population spike and the slope of the field excitatory postsynaptic potential (field e.p.s.p.) without affecting the presynaptic fibre spike of the afferents. At a concentration of 1 μM, WIN 55,212‐2 completely suppressed the postsynaptic spike, whereas the S(−)‐enantiomer WIN 55,212‐3 produced only a slight depression. The CB1 receptor antagonist SR 141716 blocked the inhibition evoked by the cannabinoids. SR 141716 had a slight facilitatory effect on neuronal excitability by itself. Anandamide shifted the input‐output curve of the postsynaptic spike and the field e.p.s.p. to the right and increased the magnitude of paired‐pulse facilitation indicating a presynaptic mechanism of action. Anandamide and WIN 55,212‐2, but not WIN 55,212‐3, attenuated both stimulus‐triggered epileptiform activity in CA1 elicited by omission of Mg2+ and spontaneously occurring epileptiform activity in CA3 elicited by omission of Mg2+ and elevation of K+ to 8 mM. The antiepileptiform effect of these cannabinoids was blocked by SR 141716. In conclusion, cannabinoid receptors of the CB1 type as well as their endogeneous ligand, anandamide, are involved in the control of neuronal excitability, thus reducing excitatory neurotransmission at a presynaptic site, a mechanism which might be involved in the prevention of excessive excitability leading to epileptiform activity.

Collaboration


Dive into the Thomas Simmet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge