Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betty Chan is active.

Publication


Featured researches published by Betty Chan.


Nature Medicine | 2018

H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers

Michael Seiler; Akihide Yoshimi; Rachel Darman; Betty Chan; Gregg F. Keaney; Mike Thomas; Anant A. Agrawal; Benjamin Caleb; Alfredo Csibi; Eckley Sean; Peter Fekkes; Craig Karr; Virginia M. Klimek; George Lai; Linda Lee; P.V. Kumar; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Shouyong Peng; Sudeep Prajapati; Justin Taylor; Teng Teng; John Q. Wang; Markus Warmuth

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor–encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Nature Communications | 2017

Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex

Teng Teng; Jennifer Tsai; Xiaoling Puyang; Michael Seiler; Shouyong Peng; Sudeep Prajapati; Daniel Aird; Silvia Buonamici; Benjamin Caleb; Betty Chan; Laura Corson; Jacob Feala; Peter Fekkes; Baudouin Gerard; Craig Karr; Manav Korpal; Xiang Liu; Jason T. Lowe; Yoshiharu Mizui; James Palacino; Eunice Park; P.G.R. Smith; V. Subramanian; Zhenhua Jeremy Wu; Jian Zou; Lihua Yu; Agustin Chicas; Markus Warmuth; Nicholas A. Larsen; Ping Zhu

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A–SF3B1 forms a central node for binding to these splicing modulators.


Organic Letters | 2014

Total Synthesis of 6-Deoxypladienolide D and Assessment of Splicing Inhibitory Activity in a Mutant SF3B1 Cancer Cell Line

Kenzo Arai; Silvia Buonamici; Betty Chan; Laura Corson; Atsushi Endo; Baudouin Gerard; Ming-Hong Hao; Craig Karr; Kazunobu Kira; Linda Lee; Xiang Liu; Jason T. Lowe; Tuoping Luo; Lisa A. Marcaurelle; Yoshiharu Mizui; Marta Nevalainen; Morgan Welzel O’Shea; Eun Sun Park; Samantha Perino; Sudeep Prajapati; Mingde Shan; Peter G. Smith; Parcharee Tivitmahaisoon; John Wang; Markus Warmuth; Kuo-Ming Wu; Lihua Yu; Huiming Zhang; Guo-Zhu Zheng; Gregg F. Keaney

A total synthesis of the natural product 6-deoxypladienolide D (1) has been achieved. Two noteworthy attributes of the synthesis are (1) a late-stage allylic oxidation which proceeds with full chemo-, regio-, and diastereoselectivity and (2) the development of a scalable and cost-effective synthetic route to support drug discovery efforts. 6-Deoxypladienolide D (1) demonstrates potent growth inhibition in a mutant SF3B1 cancer cell line, high binding affinity to the SF3b complex, and inhibition of pre-mRNA splicing.


Genes & Development | 2018

The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action.

Lorenzo I. Finci; Xiaofeng Zhang; Xiuliang Huang; Qiang Zhou; Jennifer Tsai; Teng Teng; Anant A. Agrawal; Betty Chan; Sean Irwin; Craig Karr; Andrew Cook; Ping Zhu; Dominic Reynolds; P.G.R. Smith; Peter Fekkes; Silvia Buonamici; Nicholas A. Larsen

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Cancer Research | 2017

Abstract 1185: H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers

Silvia Buonamici; Akihide Yoshimi; Mike Thomas; Michael Seiler; Betty Chan; Benjamin Caleb; Fred Csibi; Rachel Darman; Peter Fekkes; Craig Karr; Gregg F. Keaney; Amy Kim; Virginia M. Klimek; P.V. Kumar; Kaiko Kunii; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Sudeep Prajapati; Nathalie Rioux; Justin Taylor; John Q. Wang; Markus Warmuth; Huilan Yao; Lihua Yu

Genomic characterization of hematologic and solid cancers has revealed recurrent somatic mutations affecting genes encoding the RNA splicing factors SF3B1, U2AF1, SRSF2 and ZRSR2. Recent data reveal that these mutations confer an alteration of function inducing aberrant splicing and rendering spliceosome mutant cells preferentially sensitive to splicing modulation compared with wildtype (WT) cells. Here we describe a novel orally bioavailable small molecule SF3B1 modulator identified through a medicinal chemistry effort aimed at optimizing compounds for preferential lethality in spliceosome mutant cells. H3B-8800 potently binds to WT or mutant SF3b complexes and modulates splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. The selectivity of H3B-8800 was confirmed by observing lack of activity in cells expressing SF3B1R1074H, the SF3B1 mutation previously shown to confer resistance to other splicing modulators. Although H3B-8800 binds both WT and mutant SF3B1, it results in preferential lethality of cancer cells expressing SF3B1K700E, SRSF2P95H, or U2AF1S34F mutations compared to WT cells. In animals xenografted with SF3B1K700E knock-in leukemia K562 cells or mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, oral H3B-8800 treatment demonstrated splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. These data were also evident in patient-derived xenografts (PDX) from patients with CMML where H3B-8800 resulted in a substantial reduction of leukemic burden only in SRSF2-mutant but not in WT CMML PDX models. Additionally, due to the high frequency of U2AF1 mutations in non-small cell lung cancer, H3B-8800 was tested in U2AF1S34F-mutant H441 lung cancer cells. Similar to the results from leukemia models, H3B-8800 demonstrated preferential lethality of U2AF1-mutant cells in vitro and in in vivo orthotopic xenografts at well tolerated doses. RNA-seq of isogenic K562 cells treated with H3B-8800 revealed dose-dependent inhibition of splicing. Although global inhibition of RNA splicing was not observed; H3B-8800 treatment led to preferential intron retention of transcripts with shorter and more GC-rich regions compared to those unaffected by drug. Interestingly, H3B-8800-retained introns commonly disrupted the expression of spliceosomal genes, suggesting that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the dependency of these cells on expression of WT spliceosomal genes. These data identify a novel therapeutic approach with selective lethality in leukemias and lung cancers bearing a spliceosome mutation. Despite the essential nature of splicing, cancer cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML, and CMML. Citation Format: Silvia Buonamici, Akihide Yoshimi, Michael Thomas, Michael Seiler, Betty Chan, Benjamin Caleb, Fred Csibi, Rachel Darman, Peter Fekkes, Craig Karr, Gregg Keaney, Amy Kim, Virginia Klimek, Pavan Kumar, Kaiko Kunii, Stanley Chun-Wei Lee, Xiang Liu, Crystal MacKenzie, Carol Meeske, Yoshiharu Mizui, Eric Padron, Eunice Park, Ermira Pazolli, Sudeep Prajapati, Nathalie Rioux, Justin Taylor, John Wang, Markus Warmuth, Huilan Yao, Lihua Yu, Ping Zhu, Omar Abdel-Wahab, Peter Smith. H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1185. doi:10.1158/1538-7445.AM2017-1185


Cancer Research | 2016

Abstract 3013: Identification of PHF5A as a common cellular target of splicing-modulating chemical probes

Teng Teng; Xiaoling Puyang; Shouyong Peng; Jacob Feala; Betty Chan; Jennifer Tsai; Benjamin Caleb; Craig Karr; Eunice Park; Laura Corson; Yoshiharu Mizui; P.G.R. Smith; Nicholas A. Larsen; Lihua Yu; Markus Warmuth; Ping Zhu; Agustin Chicas

Recent discoveries that splicing factors such SF3B1, U2AF1, SRSF2 are frequently mutated in multiple hematological malignancies including chronic lymphocytic leukaemia and myelodysplastic syndromes have generated interest in therapeutic approaches to target the splicesome dependency in cancer cells bearing mutations in splicing factors. Previously, several structurally unrelated natural compounds including pladienolide, herboxidiene, and FR901464 have been shown to exert potent anti-proliferative effects in cancer cells grown in vitro. Further optimization has led to the discovery of natural product analogs (e.g. E7107) with anti-tumor efficacy in vivo in xenograft models. Target identification has revealed the SF3B complex of the splicesome as the common action site for these compounds. Recent work has demonstrated biological and genetic evidence that single amino acid substitution (R1074H) in SF3B1 completely abolished the anti-proliferative effect of pladienolide derivative E7107, suggesting that SF3B1 is the direct binding partner for pladienolides. However, the same SF3B1 R1074H mutation does not provide equal level of protections for cells treated with herboxidiene derivatives, indicating differential mechanism of action for these two classes of splicing modulators. To identify targets for herboxidiene-like compounds, we have generated resistant HCT116 clones upon continuous administration of herboxidiene derivative H3B-37045 in vitro. Whole exome sequencing from 6 resistant clones revealed a common Y36C mutation in SF3B subunit component PHF5A (SF3B14b). Over-expression of PHF5A Y36C but not the wild-type form in parental HCT116 cells confirmed the protective effect of this mutation to H3B-37045. Surprisingly, PHF5A Y36C expression also conferred resistance to the pladienolide derivative E7107, which indicates that, unlike the SF3B1 R1074H mutation, PHF5A resides within a common node of action site among different splicing modulators. RNA-seq, biochemical and structure homology-modeling analysis suggested that PHF5A Y36C mutation disrupted the action of splicing modulators through interfering with the compounds’ interaction with the SF3B complex. Detailed analysis of the function of the Y36C mutant and wild-type PHF5A in the SF3B complex is currently ongoing. Understanding the function of PHF5A in splicing and the molecular mechanism of Y36C mutation shall provide new insights of the biological role of splicesome, and guide the development of next generation splicesome inhibitors. Citation Format: Teng Teng, Xiaoling Puyang, Shouyong Peng, Jacob Feala, Betty Chan, Jennifer Tsai, Benjamin Caleb, Craig Karr, Eunice Park, Laura Corson, Yoshiharu Mizui, Peter Smith, Nicholas Larsen, Lihua Yu, Markus Warmuth, Ping Zhu, Agustin Chicas. Identification of PHF5A as a common cellular target of splicing-modulating chemical probes. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3013.


Molecular Cancer Therapeutics | 2015

Abstract C8: Targeting MCL1-dependent cancers with SF3B splicing modulators

Daniel Aird; Ermira Pazolli; Craig Furman; Linda Lee; Kaiko Kunii; Eun Sun Park; Craig Karr; Betty Chan; Michelle Aicher; Silvia Buonamici; John Wang; Jacob Feala; Lihua Yu; Markus Warmuth; P.G.R. Smith; Peter Fekkes; Ping Zhu; Baudouin Gerard; Yoshiharu Mizui; Laura Corson

Myeloid cell leukemia 1 (MCL1) is a member of the BCL2 family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and new modalities for targeting MCL1 are required. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1L) isoform to the BH3-only MCL1 short (MCL1S) isoform, which has been reported to be pro-apoptotic. Thus, changing MCL1 isoform levels through modulation of RNA splicing may represent an attractive approach to targeting MCL1-amplified cancers. To this end, we tested a collection of small molecule SF3B modulators that impact RNA splicing on MCL1-dependent and MCL1-independent NSCLC cell lines. SF3B modulators induced rapid downregulation of the long form and upregulation of the short- and intron-containing form of MCL1 across models; however, apoptosis was only observed in MCL1-dependent cells. Importantly, SF3B modulators preferentially killed MCL1-dependent cell lines and sensitivity correlated with MCL1 amplification. To dissect the mechanism of SF3B modulator-induced cytotoxicity, we overexpressed either the cDNA for the BH3-only short isoform or the full length isoform of MCL1. Surprisingly, overexpression of MCL1S cDNA had no significant effect on cells by itself and did not sensitize cells to SF3B modulator cytotoxicity. Conversely, MCL1L-specific shRNA knockdown was sufficient to kill MCL1-dependent cells and SF3B modulator cytotoxicity was rescued by expression of MCL1L cDNA. Together, these results argue that MCL1L modulation and not MCL1S upregulation is the effector of SF3B modulator cytotoxicity. In immunocompromised mice bearing MCL1-dependent xenograft models, SF3B1 modulator treatment resulted in significant downregulation of MCL1 levels accompanied by induction of apoptosis and robust efficacy at well-tolerated doses. Moreover, MCL1L cDNA expression in MCL1-dependent models rescued apoptosis induced by SF3B1 modulator treatment. These studies provide proof-of-concept that splicing modulation is an effective strategy for targeting cancers dependent on MCL1. Citation Format: Daniel Aird, Ermira Pazolli, Craig Furman, Linda Lee, Kaiko Kunii, Eun Sun Park, Craig Karr, Betty Chan, Michelle Aicher, Silvia Buonamici, John Yuan Wang, Jacob Feala, Lihua Yu, Markus Warmuth, Peter Smith, Peter Fekkes, Ping Zhu, Baudouin Gerard, Yoshiharu Mizui, Laura Corson. Targeting MCL1-dependent cancers with SF3B splicing modulators. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C8.


Cancer Research | 2015

Abstract 2941: Targeting MCL1-dependent cancers through RNA splicing modulation

Eun Sun Park; Michelle Aicher; Daniel Aird; Silvia Buonamici; Betty Chan; Cheryl Eifert; Peter Fekkes; Craig Furman; Baudouin Gerard; Craig Karr; Gregg F. Keaney; Kaiko Kunii; Linda Lee; Ermira Pazolli; Sudeep Prajapati; Takashi Satoh; P.G.R. Smith; John Wang; Karen Wang; Markus Warmuth; Lihua Yu; Ping Zhu; Yoshiharu Mizui; Laura Corson

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA Myeloid cell leukemia 1 (MCL1) is a member of the BCL2-family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and thus far has been unsuccessful. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1-L) isoform to the BH3-only containing MCL1 short (MCL1-S) isoform. As a potential approach for targeting MCL1-dependent cancers, we explored the use of MCL1 splicing modulators. We screened a unique chemical library of compounds that span a range of splicing activities on various substrates in an in vitro assay. Interestingly, we found a subset of general splicing modulators, as well as a subset of SF3B1 inhibitors, that are capable of driving the distinctive alterations in MCL1 splicing that in turn can trigger preferential killing of MCL1-dependent cell lines. The best modulators induce a prominent down-regulation of MCL1-L, up-regulation of MCL1-S, and accumulation of intron-retained MCL1 transcript. Somewhat surprisingly, several additional avenues of investigation pointed to MCL1-L down-regulation rather than MCL1-S up-regulation as the driver of preferential killing of MCL1-dependent cells. This includes the fact that compound-induced cytotoxicity can be rescued by expression of a MCL1-L cDNA and MCL1-L specific shRNA knockdown is sufficient to kill MCL1-dependent cells. On the other hand, overexpression of MCL1-S cDNA had no significant effect on cells and splicing modulators that induced very high levels of MCL1-S mRNA in the absence potent MCL1-L down-regulation exhibit minimal cytotoxicity. Biochemical characterization and understanding of these MCL1 splicing modulators has enabled further optimization of compounds that can induce potent and preferential killing of MCL1-dependent cancer cell lines in vitro. Preliminary studies in mice bearing MCL1-dependent NSCLC xenografts confirmed current lead compounds can indeed induce rapid down-regulation of MCL1-L, induction of apoptosis, and antitumor activity. Collectively these data yield insight into mechanisms of MCL1 splicing modulation that can trigger acute apoptosis in MCL1-dependent cancers and provides support for the idea of using splicing modulators to target difficult-to-drug oncogenic drivers such as MCL1. Citation Format: Eun Sun Park, Michelle Aicher, Daniel Aird, Silvia Buonamici, Betty Chan, Cheryl Eifert, Peter Fekkes, Craig Furman, Baudouin Gerard, Craig Karr, Gregg Keaney, Kaiko Kunii, Linda Lee, Ermira Pazolli, Sudeep Prajapati, Takashi Satoh, Peter Smith, John Yuan Wang, Karen Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Laura B. Corson. Targeting MCL1-dependent cancers through RNA splicing modulation. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2941. doi:10.1158/1538-7445.AM2015-2941


Cancer Research | 2015

Abstract 5564: Total synthesis of 6-deoxypladienolide D and assessment of splicing inhibitory activity in a mutant SF3B1 cancer cell line

Kenzo Arai; Silvia Buonamici; Betty Chan; Laura Corson; Atsushi Endo; Baudouin Gerard; Ming-Hong Hao; Craig Karr; Kazunobu Kira; Linda Lee; Xiang Liu; Jason T. Lowe; Tuoping Luo; Lisa A. Marcaurelle; Yoshiharu Mizui; Marta Nevalainen; Morgan Welzel O'Shea; Eun Sun Park; Samantha Perino; Sudeep Prajapati; Mingde Shan; P.G.R. Smith; Parcharee Tivitmahaisoon; John Wang; Markus Warmuth; Kuo-Ming Wu; Lihua Yu; Huiming Zhang; Guo Zhu Zheng; Gregg F. Keaney

Hotspot mutations in several components of the spliceosome have been reported in various hematological (CLL, MDS, etc.) and solid tumor (melanoma, pancreatic, etc.) malignancies. SF3B1 is a component of the U2 snRNP complex of the spliceosome and is involved in the recognition of 3′-splice sites during early spliceosomal assembly. We and others have demonstrated that mutations in SF3B1 result in neomorphic activity and trigger the production of aberrantly spliced transcripts. Thus, the discovery of small molecule modulators of SF3B1 splicing activity may have therapeutic potential in cancers harboring SF3B1 mutations. Members of the pladienolide family of natural products have been shown to affect RNA splicing through interaction with SF3B1. We have found that one particular natural product in this family, 6-deoxypladienolide D, demonstrates potent growth inhibition and cellular lethality in Panc 05.04 cells (a hotspot mutant SF3B1 cancer cell line). Due to the limited natural supply of 6-deoxypladienolide D and our interest in identifying chemical matter able to modulate splicing in these newly-identified mutant SF3B1 cancers, a total synthesis of 6-deoxypladienolide D using versatile and modular fragments was initiated. We will describe the first total synthesis of the natural product 6-deoxypladienolide D. Two noteworthy synthetic attributes are: 1) a late-stage allylic oxidation which proceeds with full chemo-, regio-, and diastereoselectivity and 2) the use of cost-effective starting materials and reagents to enable access to 6-deoxypladienolide D and its analogs for biological evaluation. We will show that 6-deoxypladienolide D demonstrates: 1) high binding affinity to the SF3b complex, 2) ability to modulate canonical pre-mRNA splicing, and 3) modulation of aberrant splicing induced by mutant SF3B1. Citation Format: Kenzo Arai, Silvia Buonamici, Betty Chan, Laura Corson, Atsushi Endo, Baudouin Gerard, Ming-Hong Hao, Craig Karr, Kazunobu Kira, Linda Lee, Xiang Liu, Jason T. Lowe, Tuoping Luo, Lisa A. Marcaurelle, Yoshiharu Mizui, Marta Nevalainen, Morgan Welzel O9Shea, Eun Sun Park, Samantha A. Perino, Sudeep Prajapati, Mingde Shan, Peter G. Smith, Parcharee Tivitmahaisoon, John Yuan Wang, Markus Warmuth, Kuo-Ming Wu, Lihua Yu, Huiming Zhang, Guo Zhu Zheng, Gregg F. Keaney. Total synthesis of 6-deoxypladienolide D and assessment of splicing inhibitory activity in a mutant SF3B1 cancer cell line. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5564. doi:10.1158/1538-7445.AM2015-5564


Cancer Research | 2014

Abstract 2932: SF3B1 mutations induce aberrant mRNA splicing in cancer and confer sensitivity to spliceosome inhibition

Silvia Buonamici; Kian-Huat Lim; Jacob Feala; Eunice Park; Laura Corson; Michelle Aicher; Daniel Aird; Betty Chan; Erik Corcoran; Rachel Darman; Peter Fekkes; Gregg F. Keaney; Pavan Kumar; Kaiko Kunii; Linda Lee; Xiaoling Puyang; Jose Rodrigues; Anand Selvaraj; Mike Thomas; John Q. Wang; Markus Warmuth; Lihua Yu; Ping Zhu; P.G.R. Smith; Yoshiharu Mizui

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Recurrent heterozygous mutations of the spliceosome protein SF3B1 have been identified in myelodysplastic syndromes, chronic lymphocytic leukemia (CLL), breast, pancreatic and skin cancers. SF3B1 is a component of the U2 snRNP complex which binds to the pre-mRNA branch point site and is involved in recognition and stabilization of the spliceosome at the 3′ splice site. To understand the impact of SF3B1 mutations, we compared RNAseq profiles from tumor samples with SF3B1 hotspot mutations (SF3B1-MUT) or wild-type SF3B1 (SF3B1-WT) in breast cancer, melanoma and CLL. This analysis revealed significant increases in the usage of novel alternative splice junctions in SF3B1-MUT samples including selection of alternative 3′ splice sites and less frequently exon skipping. These events induce expression of alternative mRNAs that are translated into novel proteins or aberrant mRNAs that are decayed by cells. A common alternative splicing profile was shared across different hotspot mutations and lineages (e.g. ZDHHC16 and COASY); however, unique alternative splicing profiles were also observed suggesting lineage specific effects. RNAseq analysis of several cell lines with endogenous SF3B1 hotspot mutations confirmed the presence of the same spliced isoforms as observed in tumor samples. To prove that SF3B1-MUT were inducing alternative splicing, transient transfection of several SF3B1 hotspot mutations in 293FT cells induced the expression of the common alternatively spliced genes suggesting functional similarity. Selective shRNA depletion of mutant SF3B1 allele in SF3B1-MUT cells resulted in downregulation of the same splice isoforms. Furthermore, isogenic B-cell lines (NALM-6) expressing the most frequent SF3B1 mutation (K700E) were generated and profiled by RNAseq. As expected, similar alternatively spliced genes were observed in NALM-6 SF3B1-K700E cells exclusively. To investigate the role of nonsense-mediated mRNA decay (NMD) in eliminating aberrant mRNAs induced by SF3B1-MUT, we treated NALM-6 SF3B1-K700E cells with cycloheximide, a translation inhibitor known to inhibit NMD. In the treated samples, expression of several aberrant mRNAs was revealed and some of these transcripts were shown to be downregulated in patient samples. Taken together, these results confirm the association between different SF3B1 hotspot mutations and the presence of novel splice isoforms. We demonstrated that E7107, a potent and selective inhibitor of wild-type SF3B1, also binds and inhibits SF3B1-MUT protein. In addition, E7107 represses the expression of several common aberrant splice mRNA products in SF3B1-MUT cells in vitro and in vivo. When tested in a NALM-6 mouse model, E7107 induced tumor regression and increased the overall survival of animals implanted with NALM-6 SF3B1-K700E cells. These data suggest splicing inhibitors as a promising therapeutic approach for cancer patients carrying SF3B1 mutations. Citation Format: Silvia Buonamici, Kian Huat Lim, Jacob Feala, Eunice Park, Laura Corson, Michelle Aicher, Daniel Aird, Betty Chan, Erik Corcoran, Rachel Darman, Peter Fekkes, Gregg Keaney, Pavan Kumar, Kaiko Kunii, Linda Lee, Xiaoling Puyang, Jose Rodrigues, Anand Selvaraj, Michael Thomas, John Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Peter Smith, Yoshiharu Mizui. SF3B1 mutations induce aberrant mRNA splicing in cancer and confer sensitivity to spliceosome inhibition. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2932. doi:10.1158/1538-7445.AM2014-2932

Collaboration


Dive into the Betty Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.G.R. Smith

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge