Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Buonamici is active.

Publication


Featured researches published by Silvia Buonamici.


Science Translational Medicine | 2010

Interfering with Resistance to Smoothened Antagonists by Inhibition of the PI3K Pathway in Medulloblastoma

Silvia Buonamici; Juliet Williams; Michael Morrissey; Anlai Wang; Ribo Guo; Anthony Vattay; Kathy Hsiao; Jing Yuan; John Green; Beatriz Ospina; Qunyan Yu; Lance Ostrom; Paul Fordjour; Dustin L. Anderson; John E. Monahan; Joseph F. Kelleher; Stefan Peukert; Shifeng Pan; Xu Wu; Sauveur Michel Maira; Carlos Garcia-Echeverria; Kimberly J. Briggs; D. Neil Watkins; Yung Mae Yao; Christoph Lengauer; Markus Warmuth; William R. Sellers; Marion Dorsch

Resistance of medulloblastoma to Smo antagonists can be delayed or prevented by specific drug combinations. An End Run Against Tumor Resistance Cancer cells are as clever as microbes. Mustering their considerable abilities to rapidly replicate and evolve, both cancer cells and bacteria quickly develop resistance to the drugs we use to fight them. Modern medicine confronts a growing population of pathogens that cannot be treated by our usual antibiotics, and oncologists must be prepared with second- and third-line therapies, because tumors that retreat from initial drug treatments often return with renewed vigor. Buonamici et al. confront this problem in their study of a new class of cancer therapeutic agents now in clinical trials—antagonists of a membrane protein called Smoothened (Smo). The Smo receptor normally regulates a developmental pathway but is abnormally activated in medulloblastoma (a malignant brain tumor) and basal cell carcinoma of the skin. Medulloblastomas in mice respond well to these Smo antagonists but soon become resistant, these authors find. If, however, an inhibitor of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is added to the initial drug cocktail, resistance is delayed or even prevented. In some cancers, the Smo receptor is active even when its ligand is absent, conferring dependence of the tumor on the downstream Hedgehog signaling pathway, which ultimately regulates gene expression through the Gli transcription factors. Treatment of Smo-addicted tumors in mice with Smo antagonists ultimately leads to development of resistance, although tumor growth is inhibited for a while. The authors found that the tumors eluded the drug in several ways: The genes for the Gli transcription factors were sometimes amplified, compensating for loss of pathway stimulation. In other resistant tumors, there were point mutations in the Smo receptor itself that allowed reactivation of the pathway. In yet another group of tumors, by examining which genes were up-regulated, the authors found activation of a completely different signaling pathway—the PI3K pathway. Further experiments in medulloblastoma-bearing mice revealed that resistance could be delayed or even prevented by including a PI3K inhibitor along with the Smo antagonist in the initial treatment that tumor-bearing animals received. The PI3K inhibitor alone had no effect. By looking at resistance mechanisms to Smo antagonists before the drug is used in the clinic, the results of this study will better arm oncologists against the molecular defenses that cancers may commandeer to evade this drug. And by identifying a drug combination that delays or even combats development of resistance when used as a first-line treatment in clinical trials, these results could ultimately improve the lives of patients with medulloblastoma or other cancers that depend on Smo for their survival. The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate–binding protein)–coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma.


Journal of Experimental Medicine | 2007

The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia

Benjamin J. Thompson; Silvia Buonamici; Maria Luisa Sulis; Teresa Palomero; Tomas Vilimas; Giuseppe Basso; Adolfo A. Ferrando; Iannis Aifantis

Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation. Our studies map in detail the amino acid degron sequence required for NOTCH1–FBW7 interaction. Furthermore, we identify inactivating FBW7 mutations in a large fraction of human T-ALL lines and primary leukemias. These mutations abrogate the binding of FBW7 not only to NOTCH1 but also to the two other characterized targets, c-Myc and cyclin E. The majority of the FBW7 mutations were present during relapse, and they were associated with NOTCH1 HD mutations. Interestingly, most of the T-ALL lines harboring FBW7 mutations were resistant to γ-secretase inhibitor treatment and this resistance appeared to be related to the stabilization of the c-Myc protein. Our data suggest that FBW7 is a novel tumor suppressor in T cell leukemia, and implicate the loss of FBW7 function as a potential mechanism of drug resistance in T-ALL.


Nature Reviews Immunology | 2008

Molecular pathogenesis of T-cell leukaemia and lymphoma

Iannis Aifantis; Elizabeth A. Raetz; Silvia Buonamici

T-cell acute lymphoblastic leukaemia (T-ALL) is induced by the transformation of T-cell progenitors and mainly occurs in children and adolescents. Although treatment outcome in patients with T-ALL has improved in recent years, patients with relapsed disease continue to have a poor prognosis. It is therefore important to understand the molecular pathways that control both the induction of transformation and the treatment of relapsed disease. In this Review, we focus on the molecular mechanisms responsible for disease induction and maintenance. We also compare the physiological progression of T-cell differentiation with T-cell transformation, highlighting the close relationship between these two processes. Finally, we discuss potential new therapies that target oncogenic pathways in T-ALL.


Nature | 2011

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia

Apostolos Klinakis; Camille Lobry; Omar Abdel-Wahab; Philmo Oh; Hiroshi Haeno; Silvia Buonamici; Inge Vande Walle; Severine Cathelin; Thomas Trimarchi; Elisa Araldi; Cynthia Liu; Sherif Ibrahim; M. Beran; Jiri Zavadil; Argiris Efstratiadis; Tom Taghon; Franziska Michor; Ross L. Levine; Iannis Aifantis

Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit γ-secretase (γSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.


Nature Medicine | 2007

Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia

Tomas Vilimas; Joaquina Mascarenhas; Teresa Palomero; Malay Mandal; Silvia Buonamici; Fanyong Meng; Benjamin J. Thompson; Christina Spaulding; Sami Macaroun; Maria-Luisa Alegre; Barbara L. Kee; Adolfo A. Ferrando; Lucio Miele; Iannis Aifantis

T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-κB pathway transcriptionally and via the IκB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-κB in bone marrow hematopoietic stem cells and progenitors. Our observations demonstrate that the NF-κB pathway is highly active in established human T-ALL and that inhibition of the pathway can efficiently restrict tumor growth both in vitro and in vivo. These findings identify NF-κB as one of the major mediators of Notch1-induced transformation and suggest that the NF-κB pathway is a potential target of future therapies of T-ALL.


Nature | 2009

CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia.

Silvia Buonamici; Thomas Trimarchi; Maria Grazia Ruocco; Linsey Reavie; Severine Cathelin; Brenton G. Mar; Apostolos Klinakis; Yevgeniy Lukyanov; Jen Chieh Tseng; Filiz Sen; Eric A. Gehrie; Mengling Li; Elizabeth W. Newcomb; Jiri Zavadil; Daniel Meruelo; Martin Lipp; Sherif Ibrahim; Argiris Efstratiadis; David Zagzag; Jonathan S. Bromberg; Michael L. Dustin; Iannis Aifantis

T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine–receptor interaction as a CNS ‘entry’ signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications.


Journal of Clinical Investigation | 2004

EVI1 induces myelodysplastic syndrome in mice

Silvia Buonamici; Donglan Li; Yiqing Chi; Rui Zhao; Xuerong Wang; Larry D. Brace; Hongyu Ni; Yogen Saunthararajah; Giuseppina Nucifora

Myelodysplasia is a hematological disease in which genomic abnormalities accumulate in a hematopoietic stem cell leading to severe pancytopenia, multilineage differentiation impairment, and bone marrow (BM) apoptosis. Mortality in the disease results from pancytopenia or transformation to acute myeloid leukemia. There are frequent cytogenetic abnormalities, including deletions of chromosomes 5, 7, or both. Recurring chromosomal translocations in myelodysplasia are rare, but the most frequent are the t(3;3)(q21;q26) and the inv(3)(q21q26), which lead to the inappropriate activation of the EVI1 gene located at 3q26. To better understand the role of EVI1 in this disease, we have generated a murine model of EVI1-positive myelodysplasia by BM infection and transplantation. We find that EVI1 induces a fatal disease of several stages that is characterized by severe pancytopenia. The disease does not progress to acute myeloid leukemia. Comparison of in vitro and in vivo results suggests that EVI1 acts at two levels. The immediate effects of EVI1 are hyperproliferation of BM cells and downregulation of EpoR and c-Mpl, which are important for terminal erythroid differentiation and platelet formation. These defects are not fatal, and the mice survive for about 10 months with compensated hematopoiesis. Over this time, compensation fails, and the mice succumb to fatal peripheral cytopenia.


Cancer Cell | 2015

SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition

Eunhee Kim; Janine O. Ilagan; Yang Liang; Gerrit M. Daubner; Stanley Lee; Aravind Ramakrishnan; Yue Li; Young Rock Chung; Jean-Baptiste Micol; Michele E. Murphy; Hana Cho; Min-Kyung Kim; Shlomzion Aumann; Christopher Y. Park; Silvia Buonamici; Peter G. Smith; H. Joachim Deeg; Camille Lobry; Iannis Aifantis; Yorgo Modis; Frédéric H.-T. Allain; Stephanie Halene; Robert K. Bradley; Omar Abdel-Wahab

Mutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2s normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2, which triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key regulators, and impaired hematopoiesis.


Nature Medicine | 2010

Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway

Zainab Jagani; E. Lorena Mora-Blanco; Courtney G. Sansam; Elizabeth S. McKenna; Boris G. Wilson; Dongshu Chen; Justin Klekota; Pablo Tamayo; Phuong Nguyen; Michael Y. Tolstorukov; Peter J. Park; Yoon-Jae Cho; Kathy Hsiao; Silvia Buonamici; Scott L. Pomeroy; Jill P. Mesirov; Heinz Ruffner; Tewis Bouwmeester; Sarah J Luchansky; Joshua Murtie; Joseph F. Kelleher; Markus Warmuth; William R. Sellers; Charles W. M. Roberts; Marion Dorsch

Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli–activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells.


Nature Medicine | 2011

A crucial requirement for Hedgehog signaling in small cell lung cancer

Kwon-Sik Park; Luciano G. Martelotto; Martin Peifer; Martin L. Sos; Anthony N. Karnezis; Moe R. Mahjoub; Katie Bernard; Jamie F. Conklin; Anette Szczepny; Jing Yuan; Ribo Guo; Beatrice Ospina; Jeanette Falzon; Samara Bennett; Tracey J. Brown; Ana Markovic; Wendy Devereux; Cory A. Ocasio; James K. Chen; Tim Stearns; Roman K. Thomas; Marion Dorsch; Silvia Buonamici; D. Neil Watkins; Craig D. Peacock; Julien Sage

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.

Collaboration


Dive into the Silvia Buonamici's collaboration.

Top Co-Authors

Avatar

P.G.R. Smith

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppina Nucifora

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge