Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beverly Errede is active.

Publication


Featured researches published by Beverly Errede.


Current Opinion in Cell Biology | 1995

The proliferation of MAP kinase signaling pathways in yeast

David E. Levin; Beverly Errede

Mitogen-activated protein kinases function in at least five, physiologically distinct, signaling pathways in yeast. These include pathways that mediate response to mating pheromone, pseudohyphal development and invasive growth, cell integrity, sporulation, and response to high extracellular osmolarity. These kinases and their upstream activating kinases comprise signaling modules that, in at least some cases, exist as multiprotein complexes. Studies during the past year have revealed that the Ste5 protein of the mating pheromone response pathway serves as a scaffold to promote interactions among the protein kinases in this pathway, and to prevent their interaction with kinases of other modules.


The EMBO Journal | 1994

MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae.

Kentaro Doi; Anton Gartner; Gustav Ammerer; Beverly Errede; Hidenori Shinkawa; K Sugimoto; Kunihiro Matsumoto

Pheromone‐stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone‐induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3.


Current Opinion in Cell Biology | 1993

A conserved kinase cascade for MAP kinase activation in yeast

Beverly Errede; David E. Levin

Mitogen-activated protein kinases are regulators of proliferation and differentiation in many eukaryotes. Studies during the last year have revealed that functionally distinct signal pathways in yeast use related protein kinase cascades for mitogen-activated protein kinase activation. These cascades act as intracellular signaling modules that are likely to be conserved from yeast to mammals.


Molecular and Cellular Biology | 1999

Mid2 Is a Putative Sensor for Cell Integrity Signaling in Saccharomyces cerevisiae

Mathumathi Rajavel; Bevin Philip; Benjamin M. Buehrer; Beverly Errede; David E. Levin

ABSTRACT Hcs77 is a putative cell surface sensor for cell integrity signaling in Saccharomyces cerevisiae. Its loss of function results in cell lysis during growth at elevated temperatures (e.g., 39°C) and impaired signaling to the Mpk1 mitogen-activated protein kinase in response to mild heat shock. We isolated the MID2gene as a dosage suppressor of the cell lysis defect of anhcs77 null mutant. MID2 encodes a putative membrane protein whose function is required for survival of pheromone treatment. Mid2 possesses properties similar to those of Hcs77, including a single transmembrane domain and a long region that is rich in seryl and threonyl residues. We demonstrate that Mid2 is required for cell integrity signaling in response to pheromone. Additionally, we show that Mid2 and Hcs77 serve a redundant but essential function as cell surface sensors for cell integrity signaling during vegetative growth. Both proteins are uniformly distributed through the plasma membrane and are highly O-mannosylated on their extracellular domains. Finally, we identified a yeast homolog of MID2, designatedMTL1, which provides a partially redundant function withMID2 for cell integrity signaling during vegetative growth at elevated temperature but not for survival of pheromone treatment. We conclude that Hcs77 is dedicated to signaling cell wall stress during vegetative growth and that Mid2 participates in this signaling, but its primary role is in signaling wall stress during pheromone-induced morphogenesis.


Molecular and Cellular Biology | 1997

Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae

Benjamin M. Buehrer; Beverly Errede

Mating pheromone stimulates a mitogen-activated protein (MAP) kinase activation pathway in Saccharomyces cerevisiae that induces cells to differentiate and form projections oriented toward the gradient of pheromone secreted by a mating partner. The polarized growth of mating projections involves new cell wall synthesis, a process that relies on activation of the cell integrity MAP kinase, Mpk1. In this report, we show that Mpk1 activation during pheromone induction requires the transcriptional output of the mating pathway and protein synthesis. Consequently, Mpk1 activation occurs subsequent to the activation of the mating pathway MAP kinase cascade. Additionally, Spa2 and Bni1, a formin family member, are two coil-coil-related proteins that are involved in the timing and other aspects of mating projection formation. Both proteins also affect the timing and extent of Mpk1 activation. This correlation suggests that projection formation comprises part of the pheromone-induced signal that coordinates Mpk1 activation with mating differentiation. Stimulation of Mpk1 activity occurs through the cell integrity phosphorylation cascade and depends on Pkc1 and the redundant MAP/Erk kinases (MEKs), Mkk1 and Mkk2. Surprisingly, Mpk1 activation by pheromone was only partially impaired in cells lacking the MEK kinase Bck1. This Bck1-independent mechanism reveals the existence of an alternative activator of Mkk1/Mkk2 in some strain backgrounds that at least functions under pheromone-induced conditions.


Molecular and Cellular Biology | 1993

Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases.

Zhaoqing Zhou; Anton Gartner; Rebecca M. Cade; Gustav Ammerer; Beverly Errede

Protein phosphorylation plays an important role in pheromone-induced differentiation processes of haploid yeast cells. Among the components necessary for signal transduction are the STE7 and STE11 kinases and either one of the redundant FUS3 and KSS1 kinases. FUS3 and presumably KSS1 are phosphorylated and activated during pheromone induction by a STE7-dependent mechanism. Pheromone also induces the accumulation of STE7 in a hyperphosphorylated form. This modification of STE7 requires the STE11 kinase, which is proposed to act before STE7 during signal transmission. Surprisingly, STE7 hyperphosphorylation also requires a functional FUS3 (or KSS1) kinase. Using in vitro assays for FUS3 phosphorylation, we show that pheromone activates STE7 even in the absence of FUS3 and KSS1. Therefore, STE7 activation must precede modification of FUS3 (and KSS1). These findings suggest that STE7 hyperphosphorylation is a consequence of its activation but not the determining event.


Molecular Cell | 2008

Regulation of Cell Signaling Dynamics by the Protein Kinase-Scaffold Ste5

Nan Hao; Sujata Nayak; Marcelo Behar; Ryan H. Shanks; Michal J. Nagiec; Beverly Errede; Jeff Hasty; Timothy C. Elston; Henrik G. Dohlman

Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.


Molecular and Cellular Biology | 1998

Ash1, a Daughter Cell-Specific Protein, Is Required for Pseudohyphal Growth of Saccharomyces cerevisiae

Sarat Chandarlapaty; Beverly Errede

ABSTRACT Ash1 (for asymmetric synthesis of HO) was first uncovered in genetic screens that revealed its role in mating-type switching. Ash1 prevents HO expression in daughter cells. Because Ash1 has a zinc finger-like domain related to that of the GATA family of transcription factors, it presumably acts by repressingHO transcription. Nonswitching diploid cells also express Ash1, suggesting it could have functions in addition to regulation ofHO expression. We show here that Ash1 has an essential function for pseudohyphal growth. Our epistasis analyses are consistent with the deduction that Ash1 acts separately from the mitogen-activated protein kinase cascade and Ste12. Similarly to the case in yeast form cells, Ash1 is asymmetrically localized to the nuclei of daughter cells during pseudohyphal growth. This asymmetric localization reveals that there is a previously unsuspected daughter cell-specific function necessary for pseudohyphal growth.


Molecular and Cellular Biology | 1995

Yeast MEK-dependent signal transduction: response thresholds and parameters affecting fidelity.

Beverly M. Yashar; Kenji Irie; John A. Printen; Brian J. Stevenson; George F. Sprague; Kunihiro Matsumoto; Beverly Errede

Ste7p and Mkk1p are MEK (MAPK/ERK kinase) family members that function in the mating and cell integrity signal transduction pathways in Saccharomyces cerevisiae. We selected STE7 and MKK1 mutations that stimulated their respective pathways in the absence of an inductive signal. Strikingly, serine-to-proline substitutions at analogous positions in Ste7p (position 368) and Mkk1p (position 386) were recovered by independent genetic screens. Such an outcome suggests that this substitution in other MEKs would exhibit similar properties. The Ste7p-P368 variant has higher basal enzymatic activity than Ste7p but still requires induction to reach full activation. The higher activity associated with Ste7p-P368 allows it to compensate for defects in the cell integrity pathway, but it does so only when it is overproduced or when Ste5p is missing. This behavior suggests that Ste5p, which has been proposed to be a tether for the kinases in the mating pathway, contributes to Ste7p specificity.


Molecular and Cellular Biology | 1997

Cooperative binding interactions required for function of the Ty1 sterile responsive element.

M Baur; R K Esch; Beverly Errede

The Ste12p transcription factor controls the expression of Ty1 transposable element insertion mutations and genes whose products are required for mating in Saccharomyces cerevisiae. The binding site for Ste12p is a consensus DNA sequence known as a pheromone response element (PRE). Upstream activating sequences (UASs) derived from known Ste12p-dependent genes have previously been characterized to require either multiple PREs or a single PRE coupled to a binding site for a second protein. The Ste12p-dependent UAS from Ty1, called a sterile response element (SRE), is of the second type and is comprised of a PRE and an adjacent TEA (TEF-1, Tec1, and AbaA motif) DNA consensus sequence (TCS). In this report, we show by UV cross-linking analysis that two proteins, Ste12p and a protein with an apparent size of 72 kDa, directly contact the Ty1 SRE. Other experiments show that Tec1p is required for formation of the Ty1 SRE protein-DNA complex and is physically present in the complex. These results establish a direct role for Tec1p in the Ty1 SRE and yet another set of combinatorial interactions that achieve a qualitatively distinct mode of transcriptional regulation with Ste12p.

Collaboration


Dive into the Beverly Errede's collaboration.

Top Co-Authors

Avatar

Timothy C. Elston

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Henrik G. Dohlman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eintou Ford

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Houser

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michal J. Nagiec

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nan Hao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Beverly M. Yashar

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge