Bhargava Chinni
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bhargava Chinni.
Journal of clinical imaging science | 2013
Vikram S. Dogra; Bhargava Chinni; Keerthi S. Valluru; Jean V. Joseph; Ahmed Ghazi; Jorge L. Yao; Katie Evans; Edward M. Messing; Navalgund Rao
Objective: The objective of this study is to validate if ex-vivo multispectral photoacoustic (PA) imaging can differentiate between malignant prostate tissue, benign prostatic hyperplasia (BPH), and normal human prostate tissue. Materials and Methods: Institutional Review Boards approval was obtained for this study. A total of 30 patients undergoing prostatectomy for biopsy-confirmed prostate cancer were included in this study with informed consent. Multispectral PA imaging was performed on surgically excised prostate tissue and chromophore images that represent optical absorption of deoxyhemoglobin (dHb), oxyhemoglobin (HbO2), lipid, and water were reconstructed. After the imaging procedure is completed, malignant prostate, BPH and normal prostate regions were marked by the genitourinary pathologist on histopathology slides and digital images of marked histopathology slides were obtained. The histopathology images were co-registered with chromophore images. Region of interest (ROI) corresponding to malignant prostate, BPH and normal prostate were defined on the chromophore images. Pixel values within each ROI were then averaged to determine mean intensities of dHb, HbO2, lipid, and water. Results: Our preliminary results show that there is statistically significant difference in mean intensity of dHb (P < 0.0001) and lipid (P = 0.0251) between malignant prostate and normal prostate tissue. There was difference in mean intensity of dHb (P < 0.0001) between malignant prostate and BPH. Sensitivity, specificity, positive predictive value, and negative predictive value of our imaging system were found to be 81.3%, 96.2%, 92.9% and 89.3% respectively. Conclusion: Our preliminary results of ex-vivo human prostate study suggest that multispectral PA imaging can differentiate between malignant prostate, BPH and normal prostate tissue.
American Journal of Roentgenology | 2014
Vikram S. Dogra; Bhargava Chinni; Keerthi S. Valluru; Jacob Moalem; Ellen Giampoli; Katie Evans; Navalgund Rao
OBJECTIVE The purpose of this study was to validate whether ex vivo multispectral photoacoustic imaging can be used to differentiate malignant tissue, benign nodules, and normal human thyroid tissue. SUBJECTS AND METHODS Fifty patients undergoing thyroidectomy because of thyroid lesions participated in this study. Multispectral photoacoustic imaging was performed on surgically excised thyroid tissue, and chromophore images that represented optical absorption of deoxyhemoglobin, oxyhemoglobin, lipid, and water were reconstructed. After the imaging procedure, the pathologist marked malignant tissue, benign nodules, and normal regions on histopathologic slides, and digital images of the marked histopathologic slides were obtained. The histopathologic images were coregistered with chromophore images. Areas corresponding to malignant tissue, benign nodules, and normal tissue were defined on the chromophore images. Pixel values within each area were averaged to determine the mean intensities of deoxyhemoglobin, oxyhemoglobin, lipid, and water. RESULTS There was a statistically significant difference between malignant and benign nodules with respect to mean intensity of deoxyhemoglobin (p = 0.014). There was a difference between malignant and normal tissue in mean intensity of deoxyhemoglobin (p = 0.003), lipid (p = 0.001), and water (p < 0.0001). A difference between benign nodules and normal tissue was found in mean intensity of oxyhemoglobin (p < 0.0001), lipid (p < 0.0001), and water (p < 0.0001). The sensitivity, specificity, and positive and negative predictive values of the system tested in differentiating malignant from nonmalignant thyroid tissue were 69.2%, 96.9%, 81.8%, and 93.9%. CONCLUSION The preliminary results of this ex vivo human thyroid study suggest that multispectral photoacoustic imaging can be used to differentiate malignant and benign nodules and normal human thyroid tissue.
Journal of clinical imaging science | 2011
Keerthi S. Valluru; Bhargava Chinni; Navalgund Rao
In todays world, technology is advancing at an exponential rate and medical imaging is no exception. During the last hundred years, the field of medical imaging has seen a tremendous technological growth with the invention of imaging modalities including but not limited to X-ray, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These tools have led to better diagnosis and improved patient care. However, each of these modalities has its advantages as well as disadvantages and none of them can reveal all the information a physician would like to have. In the last decade, a new diagnostic technology called photoacoustic imaging has evolved which is moving rapidly from the research phase to the clinical trial phase. This article outlines the basics of photoacoustic imaging and describes our hands-on experience in developing a comprehensive photoacoustic imaging system to detect tissue abnormalities.
Proceedings of SPIE | 2011
Keerthi S. Valluru; Bhargava Chinni; Navalgund Rao; Shweta Bhatt; Vikram S. Dogra
Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.
Journal of Ultrasound in Medicine | 2016
Saugata Sinha; Navalgund Rao; Bhargava Chinni; Vikram S. Dogra
The purpose of this study was to investigate the feasibility of differentiating malignant prostate from benign prostatic hyperplasia (BPH) and normal prostate tissue by performing frequency domain analysis of photoacoustic images acquired at 2 different wavelengths.
international conference of the ieee engineering in medicine and biology society | 2008
Navalgund Rao; Di Lai; Shweta Bhatt; Stephen C. Arnold; Bhargava Chinni; Vikram S. Dogra
From a fundamental perspective, image reconstruction tasks in both ultrasound pulse echo and photoacoustic imaging are identical. We propose a C-scan imaging scheme that is applicable to both modalities where the image reconstruction is achieved through focusing action of an acoustic lens. The theory to characterize the imaging system is presented. Experimental methodology to determine the system point-spread-function is outlined and demonstrated with preliminary results.
Journal of Biomedical Optics | 2016
Vikram S. Dogra; Bhargava Chinni; Shalini Singh; Hans Schmitthenner; Navalgund Rao; John Krolewski; Kent L. Nastiuk
Abstract. There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.
Proceedings of SPIE | 2014
Saugata Sinha; Navalgund Rao; Keerthi S. Valluru; Bhargava Chinni; Vikram S. Dogra; María Helguera
Frequency domain analysis of the photoacoustic (PA) radio frequency signals can potentially be used as a tool for characterizing microstructure of absorbers in tissue. This study investigates the feasibility of analyzing the spectrum of multiwavelength PA signals generated by excised human prostate tissue samples to differentiate between malignant and normal prostate regions. Photoacoustic imaging at five different wavelengths, corresponding to peak absorption coefficients of deoxyhemoglobin, whole blood, oxyhemoglobin, water and lipid in the near infrared (NIR) (700 nm – 1000 nm) region, was performed on freshly excised prostate specimens taken from patients undergoing prostatectomy for biopsy confirmed prostate cancer. The PA images were co-registered with the histopathology images of the prostate specimens to determine the region of interest (ROI) corresponding to malignant and normal tissue. The calibrated power spectrum of each PA signal from a selected ROI was fit to a linear model to extract the corresponding slope, midband fit and intercept parameters. The mean value of each parameter corresponding to malignant and adjacent normal prostate ROI was calculated for each of the five wavelengths. The results obtained for 9 different human prostate specimens, show that the mean values of midband fit and intercept are significantly different between malignant and normal regions. In addition, the average midband fit and intercept values show a decreasing trend with increasing wavelength. These preliminary results suggest that frequency analysis of multispectral PA signals can be used to differentiate malignant region from the adjacent normal region in human prostate tissue.
international conference on imaging systems and techniques | 2010
Keerthi S. Valluru; Bhargava Chinni; Shweta Bhatt; Vikram S. Dogra; Navalgund Rao; D. Akata
Prostate cancer is the most common malignancy in males and the second leading cause of death due to cancer in the United States. Ultrasound combined with Transrectal ultrasound guided biopsy (TRUS) is the only diagnostic modality in use; however it has low sensitivity and specificity. Need for an improved imaging modality is deeply felt by the community. We propose a novel method and a device for imaging of the prostate, C-scan Photoacoustic (PA) imaging of the prostate. The basic principle, our imaging system design, fabrication and preliminary results are described in this paper.
Proceedings of SPIE | 2016
Bhargava Chinni; Zichao Han; Nicholas Brown; Pedro Vallejo; Tess Jacobs; Wayne H. Knox; Vikram S. Dogra; Navalgund Rao
We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.