Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhupinder Pal is active.

Publication


Featured researches published by Bhupinder Pal.


Nature Medicine | 2009

Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers

Elgene Lim; François Vaillant; Di Wu; Natasha C. Forrest; Bhupinder Pal; Adam H. Hart; Marie-Liesse Asselin-Labat; David E. Gyorki; Teresa Ward; Audrey Partanen; Frank Feleppa; Lily I. Huschtscha; Heather Thorne; Stephen B. Fox; Max Yan; Juliet D. French; Melissa A. Brown; Gordon K. Smyth; Jane E. Visvader; Geoffrey J. Lindeman

Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .


Nature | 2010

Control of mammary stem cell function by steroid hormone signalling

Marie-Liesse Asselin-Labat; François Vaillant; Julie Sheridan; Bhupinder Pal; Di Wu; Evan R. Simpson; Hisataka Yasuda; Gordon K. Smyth; T. John Martin; Geoffrey J. Lindeman; Jane E. Visvader

The ovarian hormones oestrogen and progesterone profoundly influence breast cancer risk, underpinning the benefit of endocrine therapies in the treatment of breast cancer. Modulation of their effects through ovarian ablation or chemoprevention strategies also significantly decreases breast cancer incidence. Conversely, there is an increased risk of breast cancer associated with pregnancy in the short term. The cellular mechanisms underlying these observations, however, are poorly defined. Here we demonstrate that mouse mammary stem cells (MaSCs) are highly responsive to steroid hormone signalling, despite lacking the oestrogen and progesterone receptors. Ovariectomy markedly diminished MaSC number and outgrowth potential in vivo, whereas MaSC activity increased in mice treated with oestrogen plus progesterone. Notably, even three weeks of treatment with the aromatase inhibitor letrozole was sufficient to reduce the MaSC pool. In contrast, pregnancy led to a transient 11-fold increase in MaSC numbers, probably mediated through paracrine signalling from RANK ligand. The augmented MaSC pool indicates a cellular basis for the short-term increase in breast cancer incidence that accompanies pregnancy. These findings further indicate that breast cancer chemoprevention may be achieved, in part, through suppression of MaSC function.


Cell Stem Cell | 2008

Notch Signaling Regulates Mammary Stem Cell Function and Luminal Cell-Fate Commitment

Toula Bouras; Bhupinder Pal; François Vaillant; Gwyndolen Harburg; Marie-Liesse Asselin-Labat; Samantha R. Oakes; Geoffrey J. Lindeman; Jane E. Visvader

The recent identification of mouse mammary stem cells (MaSCs) and progenitor subpopulations has enhanced the prospect of investigating the genetic control of their lineage specification and differentiation. Here we have explored the role of the Notch pathway within the mammary epithelial hierarchy. We show that knockdown of the canonical Notch effector Cbf-1 in the MaSC-enriched population results in increased stem cell activity in vivo as well as the formation of aberrant end buds, implying a role for endogenous Notch signaling in restricting MaSC expansion. Conversely, Notch was found to be preferentially activated in the ductal luminal epithelium in vivo and promoted commitment of MaSCs exclusively along the luminal lineage. Notably, constitutive Notch signaling specifically targeted luminal progenitor cells for expansion, leading to hyperplasia and tumorigenesis. These findings reveal key roles for Notch signaling in MaSCs and luminal cell commitment and further suggest that inappropriate Notch activation promotes the self-renewal and transformation of luminal progenitor cells.


Breast Cancer Research | 2010

Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways

Elgene Lim; Di Wu; Bhupinder Pal; Toula Bouras; Marie-Liesse Asselin-Labat; François Vaillant; Hideo Yagita; Geoffrey J. Lindeman; Gordon K. Smyth; Jane E. Visvader

IntroductionMolecular characterization of the normal epithelial cell types that reside in the mammary gland is an important step toward understanding pathways that regulate self-renewal, lineage commitment, and differentiation along the hierarchy. Here we determined the gene expression signatures of four distinct subpopulations isolated from the mouse mammary gland. The epithelial cell signatures were used to interrogate mouse models of mammary tumorigenesis and to compare with their normal human counterpart subsets to identify conserved genes and networks.MethodsRNA was prepared from freshly sorted mouse mammary cell subpopulations (mammary stem cell (MaSC)-enriched, committed luminal progenitor, mature luminal and stromal cell) and used for gene expression profiling analysis on the Illumina platform. Gene signatures were derived and compared with those previously reported for the analogous normal human mammary cell subpopulations. The mouse and human epithelial subset signatures were then subjected to Ingenuity Pathway Analysis (IPA) to identify conserved pathways.ResultsThe four mouse mammary cell subpopulations exhibited distinct gene signatures. Comparison of these signatures with the molecular profiles of different mouse models of mammary tumorigenesis revealed that tumors arising in MMTV-Wnt-1 and p53-/- mice were enriched for MaSC-subset genes, whereas the gene profiles of MMTV-Neu and MMTV-PyMT tumors were most concordant with the luminal progenitor cell signature. Comparison of the mouse mammary epithelial cell signatures with their human counterparts revealed substantial conservation of genes, whereas IPA highlighted a number of conserved pathways in the three epithelial subsets.ConclusionsThe conservation of genes and pathways across species further validates the use of the mouse as a model to study mammary gland development and highlights pathways that are likely to govern cell-fate decisions and differentiation. It is noteworthy that many of the conserved genes in the MaSC population have been considered as epithelial-mesenchymal transition (EMT) signature genes. Therefore, the expression of these genes in tumor cells may reflect basal epithelial cell characteristics and not necessarily cells that have undergone an EMT. Comparative analyses of normal mouse epithelial subsets with murine tumor models have implicated distinct cell types in contributing to tumorigenesis in the different models.


Cancer Cell | 2013

Targeting BCL-2 with the BH3 Mimetic ABT-199 in Estrogen Receptor-Positive Breast Cancer

François Vaillant; Delphine Mérino; Lily Lee; Kelsey Breslin; Bhupinder Pal; Matthew E. Ritchie; Gordon K. Smyth; Michael Christie; Louisa Phillipson; Christopher J. Burns; G. Bruce Mann; Jane E. Visvader; Geoffrey J. Lindeman

The prosurvival protein BCL-2 is frequently overexpressed in estrogen receptor (ER)-positive breast cancer. We have generated ER-positive primary breast tumor xenografts that recapitulate the primary tumors and demonstrate that the BH3 mimetic ABT-737 markedly improves tumor response to the antiestrogen tamoxifen. Despite abundant BCL-XL expression, similar efficacy was observed with the BCL-2 selective inhibitor ABT-199, revealing that BCL-2 is a crucial target. Unexpectedly, BH3 mimetics were found to counteract the side effect of tamoxifen-induced endometrial hyperplasia. Moreover, BH3 mimetics synergized with phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors in eliciting apoptosis. Importantly, these two classes of inhibitor further enhanced tumor response in combination therapy with tamoxifen. Collectively, our findings provide a rationale for the clinical evaluation of BH3 mimetics in therapy for breast cancer.


Nature Cell Biology | 2015

EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival

Nai Yang Fu; Anne C. Rios; Bhupinder Pal; Rina Soetanto; Aaron T. L. Lun; Kevin H. Liu; Tamara Beck; Sarah A. Best; François Vaillant; Andreas Strasser; Thomas Preiss; Gordon K. Smyth; Geoffrey J. Lindeman; Jane E. Visvader

Expansion and remodelling of the mammary epithelium requires a tight balance between cellular proliferation, differentiation and death. To explore cell survival versus cell death decisions in this organ, we deleted the pro-survival gene Mcl-1 in the mammary epithelium. Mcl-1 was found to be essential at multiple developmental stages including morphogenesis in puberty and alveologenesis in pregnancy. Moreover, Mcl-1-deficient basal cells were virtually devoid of repopulating activity, suggesting that this gene is required for stem cell function. Profound upregulation of the Mcl-1 protein was evident in alveolar cells at the switch to lactation, and Mcl-1 deficiency impaired lactation. Interestingly, EGF was identified as one of the most highly upregulated genes on lactogenesis and inhibition of EGF or mTOR signalling markedly impaired lactation, with concomitant decreases in Mcl-1 and phosphorylated ribosomal protein S6. These data demonstrate that Mcl-1 is essential for mammopoiesis and identify EGF as a critical trigger of Mcl-1 translation to ensure survival of milk-producing alveolar cells.


Nature Cell Biology | 2017

Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive

Nai Yang Fu; Anne C. Rios; Bhupinder Pal; Charity W. Law; Paul R. Jamieson; Ruijie Liu; François Vaillant; Felicity C. Jackling; Kevin H. Liu; Gordon K. Smyth; Geoffrey J. Lindeman; Matthew E. Ritchie; Jane E. Visvader

Despite accumulating evidence for a mammary differentiation hierarchy, the basal compartment comprising stem cells remains poorly characterized. Through gene expression profiling of Lgr5+ basal epithelial cells, we identify a new marker, Tetraspanin8 (Tspan8). Fractionation based on Tspan8 and Lgr5 expression uncovered three distinct mammary stem cell (MaSC) subsets in the adult mammary gland. These exist in a largely quiescent state but differ in their reconstituting ability, spatial localization, and their molecular and epigenetic signatures. Interestingly, the deeply quiescent MaSC subset (Lgr5+Tspan8hi) resides within the proximal region throughout life, and has a transcriptome strikingly similar to that of claudin-low tumours. Lgr5+Tspan8hi cells appear to originate from the embryonic mammary primordia before switching to a quiescent state postnatally but can be activated by ovarian hormones. Our findings reveal an unexpected degree of complexity within the adult MaSC compartment and identify a dormant subset poised for activation in response to physiological stimuli.


Oncogene | 2015

Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2.

Delphine Mérino; Sarah A. Best; Marie-Liesse Asselin-Labat; François Vaillant; Bhupinder Pal; Ross A. Dickins; Robin L. Anderson; Andreas Strasser; Geoffrey J. Lindeman; Jane E. Visvader

Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model. BIM deficiency in PyMT females did not affect primary tumor growth, but substantially increased the survival of metastatic cells within the lung. These data reveal a role for BIM in the suppression of breast cancer metastasis. Intriguingly, we observed a striking correlation between the expression of BIM and the epithelial to mesenchymal transition transcription factor SNAI2 at the proliferative edge of the tumors. Overexpression and knockdown studies confirmed that these two genes were coordinately expressed, and chromatin immunoprecipitation analysis further revealed that Bim is a target of SNAI2. Taken together, our findings suggest that SNAI2-driven BIM–induced apoptosis may temper metastasis by governing the survival of disseminating breast tumor cells.


Science Translational Medicine | 2017

Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer

Delphine Mérino; James R. Whittle; François Vaillant; Antonin Serrano; Jia-Nan Gong; Göknur Giner; Ana Leticia Maragno; Maïa Chanrion; Emilie Schneider; Bhupinder Pal; Xiang Li; Grant Dewson; Julius Gräsel; Kevin H. Liu; Najoua Lalaoui; David Segal; Marco J. Herold; David C. S. Huang; Gordon K. Smyth; Guillaume Lessene; Jane E. Visvader; Geoffrey J. Lindeman

The MCL-1 inhibitor S63845 is effective in combination with conventional therapy for targeting triple-negative and HER2-amplified breast cancer. Cutting off another tumor lifeline BH3 mimetics are drugs that inhibit the BCL-2 family of prosurvival proteins in cancer cells and thereby promote cancer cell death. Unfortunately, MCL-1, a member of this prosurvival family, can interfere with treatment because it is not sensitive to currently available BH3 mimetics. The MCL-1 inhibitor S63845 was developed to overcome this mechanism of treatment resistance, and Merino et al. examined the effectiveness of this drug in cell lines and xenografts derived from breast cancer patients. The authors demonstrated the drug’s efficacy in combination with several drugs that are already in clinical use and also identified a protein that can promote treatment resistance, which may help predict which patients are more likely to benefit from the new treatment. The development of BH3 mimetics, which antagonize prosurvival proteins of the BCL-2 family, represents a potential breakthrough in cancer therapy. Targeting the prosurvival member MCL-1 has been an area of intense interest because it is frequently deregulated in cancer. In breast cancer, MCL-1 is often amplified, and high expression predicts poor patient outcome. We tested the MCL-1 inhibitor S63845 in breast cancer cell lines and patient-derived xenografts with high expression of MCL-1. S63845 displayed synergistic activity with docetaxel in triple-negative breast cancer and with trastuzumab or lapatinib in HER2-amplified breast cancer. Using S63845-resistant cells combined with CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated 9) technology, we identified deletion of BAK and up-regulation of prosurvival proteins as potential mechanisms that confer resistance to S63845 in breast cancer. Collectively, our findings provide a strong rationale for the clinical evaluation of MCL-1 inhibitors in breast cancer.


Nature Communications | 2016

Essential role for a novel population of binucleated mammary epithelial cells in lactation

Anne C. Rios; Nai Yang Fu; Paul R. Jamieson; Bhupinder Pal; Lachlan Whitehead; Kevin R. Nicholas; Geoffrey J. Lindeman; Jane E. Visvader

The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species.

Collaboration


Dive into the Bhupinder Pal's collaboration.

Top Co-Authors

Avatar

Jane E. Visvader

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Geoffrey J. Lindeman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gordon K. Smyth

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

François Vaillant

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nai Yang Fu

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anne C. Rios

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marie-Liesse Asselin-Labat

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Paul R. Jamieson

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin H. Liu

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Matthew E. Ritchie

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge