Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane E. Visvader is active.

Publication


Featured researches published by Jane E. Visvader.


Nature Reviews Cancer | 2008

Cancer stem cells in solid tumours: accumulating evidence and unresolved questions

Jane E. Visvader; Geoffrey J. Lindeman

Solid tumours are an enormous cancer burden and a major therapeutic challenge. The cancer stem cell (CSC) hypothesis provides an attractive cellular mechanism to account for the therapeutic refractoriness and dormant behaviour exhibited by many of these tumours. There is increasing evidence that diverse solid tumours are hierarchically organized and sustained by a distinct subpopulation of CSCs. Direct evidence for the CSC hypothesis has recently emerged from mouse models of epithelial tumorigenesis, although alternative models of heterogeneity also seem to apply. The clinical relevance of CSCs remains a fundamental issue but preliminary findings indicate that specific targeting may be possible.


Cancer Research | 2006

Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells.

Michael F. Clarke; John E. Dick; Peter Dirks; Connie J. Eaves; Catriona Jamieson; D. Leanne Jones; Jane E. Visvader; Irving L. Weissman; Geoffrey M. Wahl

A workshop was convened by the AACR to discuss the rapidly emerging cancer stem cell model for tumor development and progression. The meeting participants were charged with evaluating data suggesting that cancers develop from a small subset of cells with self-renewal properties analogous to organ


Nature | 2006

Generation of a functional mammary gland from a single stem cell.

Mark Shackleton; François Vaillant; Kaylene J. Simpson; John Stingl; Gordon K. Smyth; Marie-Liesse Asselin-Labat; Li Wu; Geoffrey J. Lindeman; Jane E. Visvader

The existence of mammary stem cells (MaSCs) has been postulated from evidence that the mammary gland can be regenerated by transplantation of epithelial fragments in mice. Interest in MaSCs has been further stimulated by their potential role in breast tumorigenesis. However, the identity and purification of MaSCs has proved elusive owing to the lack of defined markers. We isolated discrete populations of mouse mammary cells on the basis of cell-surface markers and identified a subpopulation (Lin-CD29hiCD24+) that is highly enriched for MaSCs by transplantation. Here we show that a single cell, marked with a LacZ transgene, can reconstitute a complete mammary gland in vivo. The transplanted cell contributed to both the luminal and myoepithelial lineages and generated functional lobuloalveolar units during pregnancy. The self-renewing capacity of these cells was demonstrated by serial transplantation of clonal outgrowths. In support of a potential role for MaSCs in breast cancer, the stem-cell-enriched subpopulation was expanded in premalignant mammary tissue from MMTV-wnt-1 mice and contained a higher number of MaSCs. Our data establish that single cells within the Lin-CD29hiCD24+ population are multipotent and self-renewing, properties that define them as MaSCs.


Nature Medicine | 2009

Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers

Elgene Lim; François Vaillant; Di Wu; Natasha C. Forrest; Bhupinder Pal; Adam H. Hart; Marie-Liesse Asselin-Labat; David E. Gyorki; Teresa Ward; Audrey Partanen; Frank Feleppa; Lily I. Huschtscha; Heather Thorne; Stephen B. Fox; Max Yan; Juliet D. French; Melissa A. Brown; Gordon K. Smyth; Jane E. Visvader; Geoffrey J. Lindeman

Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .


Cell | 1997

FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation

Alice P. Tsang; Jane E. Visvader; C.Alexander Turner; Yuko Fujiwara; Channing Yu; Mitchell J. Weiss; Merlin Crossley; Stuart H. Orkin

The hematopoietic transcription factor GATA-1 is essential for development of the erythroid and megakaryocytic lineages. Using the conserved zinc finger DNA-binding domain of GATA-1 in the yeast two-hybrid system, we have identified a novel, multitype zinc finger protein, Friend of GATA-1 (FOG), which binds GATA-1 but not a functionally inactive mutant lacking the amino (N) finger. FOG is coexpressed with GATA-1 during embryonic development and in erythroid and megakaryocytic cells. Furthermore, FOG and GATA-1 synergistically activate transcription from a hematopoietic-specific regulatory region and cooperate during both erythroid and megakaryocytic cell differentiation. These findings indicate that FOG acts as a cofactor for GATA-1 and provide a paradigm for the regulation of cell type-specific gene expression by GATA transcription factors.


Cell Stem Cell | 2012

Cancer Stem Cells: Current Status and Evolving Complexities

Jane E. Visvader; Geoffrey J. Lindeman

The cancer stem cell (CSC) model has been established as a cellular mechanism that contributes to phenotypic and functional heterogeneity in diverse cancer types. Recent observations, however, have highlighted many complexities and challenges: the CSC phenotype can vary substantially between patients, tumors may harbor multiple phenotypically or genetically distinct CSCs, metastatic CSCs can evolve from primary CSCs, and tumor cells may undergo reversible phenotypic changes. Although the CSC concept will have clinical relevance in specific cases, accumulating evidence suggests that it will be imperative to target all CSC subsets within the tumor to prevent relapse.


Nature | 2010

Control of mammary stem cell function by steroid hormone signalling

Marie-Liesse Asselin-Labat; François Vaillant; Julie Sheridan; Bhupinder Pal; Di Wu; Evan R. Simpson; Hisataka Yasuda; Gordon K. Smyth; T. John Martin; Geoffrey J. Lindeman; Jane E. Visvader

The ovarian hormones oestrogen and progesterone profoundly influence breast cancer risk, underpinning the benefit of endocrine therapies in the treatment of breast cancer. Modulation of their effects through ovarian ablation or chemoprevention strategies also significantly decreases breast cancer incidence. Conversely, there is an increased risk of breast cancer associated with pregnancy in the short term. The cellular mechanisms underlying these observations, however, are poorly defined. Here we demonstrate that mouse mammary stem cells (MaSCs) are highly responsive to steroid hormone signalling, despite lacking the oestrogen and progesterone receptors. Ovariectomy markedly diminished MaSC number and outgrowth potential in vivo, whereas MaSC activity increased in mice treated with oestrogen plus progesterone. Notably, even three weeks of treatment with the aromatase inhibitor letrozole was sufficient to reduce the MaSC pool. In contrast, pregnancy led to a transient 11-fold increase in MaSC numbers, probably mediated through paracrine signalling from RANK ligand. The augmented MaSC pool indicates a cellular basis for the short-term increase in breast cancer incidence that accompanies pregnancy. These findings further indicate that breast cancer chemoprevention may be achieved, in part, through suppression of MaSC function.


Genes & Development | 2009

Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis

Jane E. Visvader

The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.


Cell Stem Cell | 2008

Notch Signaling Regulates Mammary Stem Cell Function and Luminal Cell-Fate Commitment

Toula Bouras; Bhupinder Pal; François Vaillant; Gwyndolen Harburg; Marie-Liesse Asselin-Labat; Samantha R. Oakes; Geoffrey J. Lindeman; Jane E. Visvader

The recent identification of mouse mammary stem cells (MaSCs) and progenitor subpopulations has enhanced the prospect of investigating the genetic control of their lineage specification and differentiation. Here we have explored the role of the Notch pathway within the mammary epithelial hierarchy. We show that knockdown of the canonical Notch effector Cbf-1 in the MaSC-enriched population results in increased stem cell activity in vivo as well as the formation of aberrant end buds, implying a role for endogenous Notch signaling in restricting MaSC expansion. Conversely, Notch was found to be preferentially activated in the ductal luminal epithelium in vivo and promoted commitment of MaSCs exclusively along the luminal lineage. Notably, constitutive Notch signaling specifically targeted luminal progenitor cells for expansion, leading to hyperplasia and tumorigenesis. These findings reveal key roles for Notch signaling in MaSCs and luminal cell commitment and further suggest that inappropriate Notch activation promotes the self-renewal and transformation of luminal progenitor cells.


Nature | 2014

In situ identification of bipotent stem cells in the mammary gland

Anne C. Rios; Nai Yang Fu; Geoffrey J. Lindeman; Jane E. Visvader

The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates that bipotent MaSCs have a key role in coordinating ductal epithelial expansion and maintenance in the adult gland, whereas the second model proposes that only unipotent MaSCs identified by lineage tracing contribute to these processes. Through clonal cell-fate mapping studies using a stochastic multicolour cre reporter combined with a new three-dimensional imaging strategy, we provide evidence for the existence of bipotent MaSCs as well as distinct long-lived progenitor cells. The cellular dynamics at different developmental stages support a model in which both stem and progenitor cells drive morphogenesis during puberty, whereas bipotent MaSCs coordinate ductal homeostasis and remodelling of the mouse adult gland.

Collaboration


Dive into the Jane E. Visvader's collaboration.

Top Co-Authors

Avatar

Geoffrey J. Lindeman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

François Vaillant

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gordon K. Smyth

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bhupinder Pal

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marie-Liesse Asselin-Labat

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nai Yang Fu

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Eleanor Y. M. Sum

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kate D. Sutherland

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark Shackleton

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge