Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bi-Feng Yuan is active.

Publication


Featured researches published by Bi-Feng Yuan.


Talanta | 2012

Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes

Yan-Bo Luo; Qiong-Wei Yu; Bi-Feng Yuan; Yu-Qi Feng

In this work, magnetic carbon nanotubes (CNTs) were prepared by mixing the magnetic particles and multi-walled carbon nanotubes dispersed solutions. Due to their excellent adsorption capability towards hydrophobic compounds, the magnetic CNTs were used as adsorbent of magnetic solid-phase extraction (MSPE) to extract phthalate acid esters (PAEs), which are widely used in many consumable products with potential carcinogenic properties. By coupling MSPE with gas chromatography/mass spectrometry (GC/MS), a rapid, sensitive and cost-effective method for the analysis of PAEs was established. Our results showed that the limits of detection (LODs) of 16 PAEs ranged from 4.9 to 38 ng L(-1), which are much lower compared to the previously reported methods. And good linearities of the detection method were obtained with correlation coefficients (R(2)) between 0.9821 and 0.9993. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 11.7% and 14.6%, respectively. Finally, the established MSPE-GC/MS method was successfully applied to the determination of PAEs from bottled beverages, tap water and perfume samples. The recoveries of the 16 PAEs from the real samples ranged from 64.6% to 125.6% with the RSDs less than 16.5%. Taken together, the MSPE-GC/MS method developed in current study provides a new option for the detection of PAEs from real samples with complex matrices.


Nature Communications | 2013

The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods

Zhijian Cao; Yao Yu; Yingliang Wu; Pei-Pei Hao; Zhiyong Di; Yawen He; Zongyun Chen; Weishan Yang; Zhiyong Shen; Xiaohua He; Jia Sheng; Xiaobo Xu; Bohu Pan; Jing Feng; Xiaojuan Yang; Wei Hong; Wenjuan Zhao; Zhongjie Li; Kai Huang; Tian-tian Li; Yimeng Kong; Hui Liu; Dahe Jiang; Binyan Zhang; Jun Hu; Youtian Hu; Bin-Bin Wang; Jianliang Dai; Bi-Feng Yuan; Yu-Qi Feng

Representing a basal branch of arachnids, scorpions are known as ‘living fossils’ that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Efficient and accurate bypass of N2-(1-carboxyethyl)-2′-deoxyguanosine by DinB DNA polymerase in vitro and in vivo

Bi-Feng Yuan; Huachuan Cao; Yong Jiang; Haizheng Hong; Yinsheng Wang

DinB, a Y-family DNA polymerase, is conserved among all domains of life; however, its endogenous substrates have not been identified. DinB is known to synthesize accurately across a number of N2-dG lesions. Methylglyoxal (MG) is a common byproduct of the ubiquitous glycolysis pathway and induces the formation of N2-(1-carboxyethyl)-2′-deoxyguanosine (N2-CEdG) as the major stable DNA adduct. Here, we found that N2-CEdG could be detected at a frequency of one lesion per 107 nucleosides in WM-266-4 human melanoma cells, and treatment of these cells with MG or glucose led to a dose-responsive increase in N2-CEdG formation. We further constructed single-stranded M13 shuttle vectors harboring individual diastereomers of N2-CEdG at a specific site and assessed the cytotoxic and mutagenic properties of the lesion in wild-type and bypass polymerase-deficient Escherichia coli cells. Our results revealed that N2-CEdG is weakly mutagenic, and DinB (i.e., polymerase IV) is the major DNA polymerase responsible for bypassing the lesion in vivo. Moreover, steady-state kinetic measurements showed that nucleotide insertion, catalyzed by E. coli pol IV or its human counterpart (i.e., polymerase κ), opposite the N2-CEdG is both accurate and efficient. Taken together, our data support that N2-CEdG, a minor-groove DNA adduct arising from MG, is an important endogenous substrate for DinB DNA polymerase.


Nature Chemical Biology | 2014

A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses

Qin Liang; Thomas S. Dexheimer; Ping Zhang; Andrew S. Rosenthal; Mark A. Villamil; Changjun You; Qiuting Zhang; Junjun Chen; Christine A. Ott; Hongmao Sun; Diane K. Luci; Bi-Feng Yuan; Anton Simeonov; Ajit Jadhav; Hui Xiao; Yinsheng Wang; David J. Maloney; Zhihao Zhuang

Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs.


Clinical Chemistry | 2013

Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/Quadrupole TOF Mass Spectrometry

Ming-Luan Chen; Fan Shen; Wei Huang; Jiahui Qi; Yinsheng Wang; Yu-Qi Feng; Song-Mei Liu; Bi-Feng Yuan

BACKGROUND 5-Methylcytosine (5-mC) is an important epigenetic modification involved in development and is frequently altered in cancer. 5-mC can be enzymatically converted to 5-hydroxymethylcytosine (5-hmC). 5-hmC modifications are known to be prevalent in DNA of embryonic stem cells and neurons, but the distribution of 5-hmC in human liver tumor and matched control tissues has not been rigorously explored. METHODS We developed an online trapping/capillary hydrophilic-interaction liquid chromatography (cHILIC)/in-source fragmentation/tandem mass spectrometry system for quantifying 5-mC and 5-hmC in genomic DNA from hepatocellular carcinoma (HCC) tumor tissues and relevant tumor adjacent tissues. A polymer-based hydrophilic monolithic column was prepared and used for the separation of 12 nucleosides by cHILIC coupled with an online trapping system. Limits of detection and quantification, recovery, and imprecision of the method were determined. RESULTS Limits of detection for 5-mC and 5-hmC were 0.06 and 0.19 fmol, respectively. The imprecision and recovery of the method were determined, with the relative SDs and relative errors being <14.9% and 15.8%, respectively. HCC tumor tissues had a 4- to 5-fold lower 5-hmC content compared to tumor-adjacent tissues. In addition, 5-hmC content highly correlated with tumor stage (tumor-nodes-metastasis, P = 0.0002; Barcelona Clinic liver cancer, P = 0.0003). CONCLUSIONS The marked depletion of 5-hmC may have profound effects on epigenetic regulation in HCC and could be a potential biomarker for the early detection and prognosis of HCC.


Journal of Chromatography B | 2012

Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q-TOF-MS analysis.

Ming-Luan Chen; Xiao-Meng Fu; Jia-Qi Liu; Tiantian Ye; Sheng-Yu Hou; Yun-Qing Huang; Bi-Feng Yuan; Yan Wu; Yu-Qi Feng

In current study, we developed a highly sensitive method for the quantitative profiling of acidic phytohormones. Tandem solid-phase extraction (SPE) and liquid-liquid extraction (LLE) was employed to efficiently purify acidic phytohormones, which were further derived by 3-bromoactonyltrimethylammonium bromide (BTA) to increase the ionization efficiency in electrospray ionization-mass spectrometry detection. Additionally, fifteen BTA-derived acidic phytohormones, including ten gibberellins (GAs), were well separated with a salt gradient on poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolithic column. By employing online trapping system, the signal intensities of the analytes were significantly improved. The limits of detection (LODs, Signal/Noise=3) of targeted phytohormones ranged from 1.05 to 122.4 pg/mL, which allowed the highly sensitive determination of low abundant acidic phytohormones with tiny amount plant sample. Good reproducibility was obtained by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 10.9 and 11.9%, respectively. Recoveries of the target analytes from spiked rice leave samples ranged from 88.3 to 104.3%. By employing the method developed here, we were able to simultaneously determine 11 endogenous acidic phytohormones from only 5mg of rice leave sample, which dramatically decreased the required sample amount (three orders of magnitude lower) for the profiling of low abundant acidic phytohormones compared to previous reports. Taken together, the method provided a good solution for the highly sensitive and quantitative profiling of endogenous acidic phytohormones.


Chemical Communications | 2011

A magnetite/oxidized carbon nanotube composite used as an adsorbent and a matrix of MALDI-TOF-MS for the determination of benzo[a]pyrene

Xiao-Shui Li; Jian-Hong Wu; Li-Dan Xu; Qin Zhao; Yan-Bo Luo; Bi-Feng Yuan; Yu-Qi Feng

A magnetite/oxidized carbon nanotube composite, Fe(3)O(4)@SiO(2)/OCNT, was fabricated in a simple way, and it was successfully used as a magnetic solid-phase extraction sorbent and a significant matrix of the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the detection of benzo[a]pyrene (BaP).


Journal of Chromatography A | 2012

Substrateless graphene fiber: A sorbent for solid-phase microextraction

Yan-Bo Luo; Bi-Feng Yuan; Qiong-Wei Yu; Yu-Qi Feng

In current study, a substrateless graphene fiber was successfully prepared by a simple hydrothermal strategy and used as solid-phase microextraction (SPME) sorbent. Five organochlorine pesticides (OCPs) were employed as model analytes to evaluate the performance of as-prepared graphene fiber. The results showed that the graphene fiber exhibited higher extraction efficiencies, higher thermal stability (up to 310°C), better reproducibility, and longer service life (more than 180 times reuse) than commercial fibers. In addition, the method for the determination of OCPs was proposed by coupling headspace (HS)-SPME technique with gas chromatography/electron capture detector (HS-SPME-GC/ECD). The proposed HS-SPME-GC/ECD method showed low limits of detection (0.83-11.5 ng/L), wide linear dynamic ranges (more than 2 orders of magnitude), and acceptable reproducibility (RSD<10.9%). Finally, the proposed method was successfully applied to the analysis of OCPs in environmental water samples with good recoveries (81-121%) and satisfactory precisions (RSD<9%).


Analytical Chemistry | 2012

Facile Preparation of SiO2/TiO2 Composite Monolithic Capillary Column and Its Application in Enrichment of Phosphopeptides

Shao-Ting Wang; Meng-Ya Wang; Xin Su; Bi-Feng Yuan; Yu-Qi Feng

A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study.


Journal of Chromatography B | 2011

Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry.

Ming-Luan Chen; Yun-Qing Huang; Jia-Qi Liu; Bi-Feng Yuan; Yu-Qi Feng

Plant hormones play crucial roles in plant growth and development. However, up to date, identification and quantification of acidic plant hormones with trace amount in complicated plant matrix is still a challenge. In current study, we developed a high sensitive assay for the determination of acidic plant hormones in rice by combining capillary electrophoresis and electrospray ionization-time of flight-mass spectrometry (CE-ESI-TOF-MS). To improve the detection sensitivity of acidic plant hormones, 3-bromoactonyltrimethylammonium bromide (BTA) was synthesized as a new mass probe, which can react efficiently with acidic plant hormones in acetonitrile containing triethylamine (TEA). The positively charged BTA-derivatives were separated by CE using amino-coated capillary, which provided a reversed electroosmotic flow (EOF) at low pH, as well as reduced the adsorption of BTA-derivatives on the inner wall of capillary. Using the CE-ESI-TOF-MS method developed in current study, 15 acidic plant hormones, including 10 gibberellins (GAs), were identified and quantified with good linearities from 1.3 to 850 ng/mL with linear coefficient R(2) values of >0.99. The limits of detection (LODs) were in the range of 0.34-4.59 ng/mL. Recoveries of compounds from spiked beverage samples ranged from 84.6 to 112.2%. And a good reproducibility was obtained by evaluating the intra and inter-day precisions with relative standard deviations (RSDs) less than 6.7 and 9.9%, respectively.

Collaboration


Dive into the Bi-Feng Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinsheng Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang-Tian Zhu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge