Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianca De Filippis is active.

Publication


Featured researches published by Bianca De Filippis.


Behavioural Pharmacology | 2008

Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches.

Laura Ricceri; Bianca De Filippis; Giovanni Laviola

Rett syndrome (RTT) is a neurodevelopmental disorder, primarily affecting girls. RTT causes severe cognitive, social, motor and physiological impairments and no cure currently exists. The discovery of a monogenic origin for RTT and the subsequent generation of RTT mouse models provided a major breakthrough for RTT research. Although the characterization of these mutant mice is far from complete, they recapitulate several RTT symptoms. This review provides an overview of the behavioural domains so far investigated in these models, including the very few mouse data concerning the developmental course of RTT. Both clinical and animal studies support the presence of early defects and highlight the importance of probing the presymptomatic phase for both the precocious identification of biomarkers and the early assessment of potential therapies. Preclinical evaluations of pharmacological and nonpharmacological interventions so far carried out are also illustrated. In addition, genetic manipulations are reported that demonstrate rescue from the damage caused by the absence of the methyl-CpG-binding protein 2 (MeCP2) gene even at a mature stage. Given the rare occurrence of RTT cases, transnational collaborative networks are expected to provide a deeper understanding of aetiopathology and the development of new therapeutic approaches.


Neuropsychopharmacology | 2012

Modulation of RhoGTPases Improves the Behavioral Phenotype and Reverses Astrocytic Deficits in a Mouse Model of Rett Syndrome

Bianca De Filippis; Alessia Fabbri; Daiana Simone; Rossella Canese; Laura Ricceri; Fiorella Malchiodi-Albedi; Giovanni Laviola; Carla Fiorentini

RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.


Neurobiology of Disease | 2014

Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

Claudio De Felice; Floriana Della Ragione; Cinzia Signorini; Silvia Leoncini; Alessandra Pecorelli; Lucia Ciccoli; Francesco Scalabrì; Federico Marracino; Michele Madonna; Giuseppe Belmonte; Laura Ricceri; Bianca De Filippis; Giovanni Laviola; Giuseppe Valacchi; Thierry Durand; Jean-Marie Galano; Camille Oger; Alexandre Guy; Valérie Bultel-Poncé; Jacky Guy; Stefania Filosa; Joussef Hayek; Maurizio D'Esposito

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Neuroscience & Biobehavioral Reviews | 2014

Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome.

Daniela Valenti; Lidia de Bari; Bianca De Filippis; Alexandra Henrion-Caude; Rosa Anna Vacca

Clinical manifestations typical of mitochondrial diseases are often present in various genetic syndromes associated with intellectual disability, a condition leading to deficit in cognitive functions and adaptive behaviors. Until now, the causative mechanism leading to intellectual disability is unknown and the progression of the condition is poorly understood. We first report latest advances on genetic and environmental regulation of mitochondrial function and its role in brain development. Starting from the structure, function and regulation of the oxidative phosphorylation apparatus, we review how mitochondrial biogenesis and dynamics play a central role in neurogenesis and neuroplasticity. We then discuss how dysfunctional mitochondria and alterations in reactive oxygen species homeostasis are potentially involved in the pathogenesis of various neurodevelopmental syndromes with a special focus on Down, Rett, Fragile X syndromes and autism spectrum disorders. Finally, we review and suggest novel therapeutic approaches aimed at improving intellectual disability by activating mitochondrial function and reducing oxidative stress to amiliorate the quality of life in the subjects affected.


Behavioural Brain Research | 2011

Cholinergic hypofunction in MeCP2-308 mice: Beneficial neurobehavioural effects of neonatal choline supplementation

Laura Ricceri; Bianca De Filippis; Andrea Fuso; Giovanni Laviola

We studied the long-term effects of a postnatal choline supplementation (from birth till weaning) in the truncated MeCP2-308 mouse model of Rett syndrome. Adult male mutant hemizygous (hz) mice showed a reduction of locomotor activity compared to wild type (wt) littermates. Early choline treatment restored wt-like locomotor activity levels in hz mice. Reduced striatal choline acetyl transferase (ChAT) activity and decreased levels of cortical mRNA NGF were found in hz mice. Choline supplementation increased striatal ChAT activity and also enhanced NGF and BDNF expression in cortical and hippocampal regions. As a whole, postnatal choline supplementation attenuates some of the behavioural and neurobiological abnormalities of the Mecp2-308 phenotype.


Free Radical Biology and Medicine | 2015

Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1

Bianca De Filippis; Daniela Valenti; Lidia de Bari; Domenico De Rasmo; Mattia Musto; Alessia Fabbri; Laura Ricceri; Carla Fiorentini; Giovanni Laviola; Rosa Anna Vacca

Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.


Neuropsychopharmacology | 2014

Pharmacological Stimulation of the Brain Serotonin Receptor 7 as a Novel Therapeutic Approach for Rett Syndrome

Bianca De Filippis; Paola Nativio; Alessia Fabbri; Laura Ricceri; Walter Adriani; Enza Lacivita; Marcello Leopoldo; Francesca Passarelli; Andrea Fuso; Giovanni Laviola

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2–308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.


European Neuropsychopharmacology | 2015

Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

Bianca De Filippis; Daniela Valenti; Valentina Chiodi; Antonella Ferrante; Lidia de Bari; Carla Fiorentini; Maria Rosaria Domenici; Laura Ricceri; Rosa Anna Vacca; Alessia Fabbri; Giovanni Laviola

Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.


Frontiers in Behavioral Neuroscience | 2015

Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

Bianca De Filippis; Valentina Chiodi; Walter Adriani; Enza Lacivita; Cinzia Mallozzi; Marcello Leopoldo; Maria Rosaria Domenici; Andrea Fuso; Giovanni Laviola

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.


Neuroscience & Biobehavioral Reviews | 2014

Aberrant Rho GTPases signaling and cognitive dysfunction: In vivo evidence for a compelling molecular relationship

Bianca De Filippis; Emilia Romano; Giovanni Laviola

Rho GTPases are key intracellular signaling molecules that coordinate dynamic changes in the actin cytoskeleton, thereby stimulating a variety of processes, including morphogenesis, migration, neuronal development, cell division and adhesion. Deviations from normal Rho GTPases activation state have been proposed to disrupt cognition and synaptic plasticity. This review focuses on the functional consequences of genetic ablation of upstream and downstream Rho GTPases molecules on cognitive function and neuronal morphology and connectivity. Available information on this issue is described and compared to that gained from mice carrying mutations in the most studied Rho GTPases and from pharmacological in vivo studies in which brain Rho GTPases signaling was modulated. Results from reviewed literature provide definitive evidence of a compelling link between Rho GTPases signaling and cognitive function, thus supporting the notion that Rho GTPases and their downstream effectors may represent important therapeutic targets for disorders associated with cognitive dysfunction.

Collaboration


Dive into the Bianca De Filippis's collaboration.

Top Co-Authors

Avatar

Giovanni Laviola

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Laura Ricceri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilia Romano

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Fabbri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Andrea Fuso

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge