Bianca Haberl
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bianca Haberl.
Journal of Applied Physics | 2006
Bianca Haberl; Jodie Bradby; Simon Ruffell; James Williams; Paul Munroe
The deformation behavior of ion-implanted (unrelaxed) and annealed ion-implanted (relaxed) amorphous silicon (a-Si) under spherical indentation at room temperature has been investigated. It has been found that the mode of deformation depends critically on both the preparation of the amorphous film and the scale of the mechanical deformation. Ex situ measurements, such as Raman microspectroscopy and cross-sectional transmission electron microscopy, as well as in situ electrical measurements reveal the occurrence of phase transformations in all relaxed a-Si films. The preferred deformation mode of unrelaxed a-Si is plastic flow, only under certain high load conditions can this state of a-Si be forced to transform. In situ electrical measurements have revealed more detail of the transformation process during both loading and unloading. We have used ELASTICA simulations to obtain estimates of the depth of the metallic phase as a function of load, and good agreement is found with the experiment. On unloading, ...
Nature Communications | 2015
Ludovic Rapp; Bianca Haberl; Chris J. Pickard; Jodie Bradby; Eugene G Gamaly; James Williams; Andrei Rode
Ordinary materials can transform into novel phases at extraordinary high pressure and temperature. The recently developed method of ultrashort laser-induced confined microexplosions initiates a non-equilibrium disordered plasma state. Ultra-high quenching rates overcome kinetic barriers to the formation of new metastable phases, which are preserved in the surrounding pristine crystal for subsequent exploitation. Here we demonstrate that confined microexplosions in silicon produce several metastable end phases. Comparison with an ab initio random structure search reveals six energetically competitive potential phases, four tetragonal and two monoclinic structures. We show the presence of bt8 and st12, which have been predicted theoretically previously, but have not been observed in nature or in laboratory experiments. In addition, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings may pave the way for new materials with novel and exotic properties.
Applied Physics Letters | 2004
Bianca Haberl; Jodie Bradby; Michael V. Swain; James Williams; Paul Munroe
The deformation behavior of self-ion-implanted amorphous-Si (a-Si) has been studied using spherical nanoindentation in both relaxed (annealed) and unrelaxed (as-implanted) a-Si. Interestingly, phase transformations were clearly observed in the relaxed state, with the load–unload curves from these samples displaying characteristic discontinuities and cross-sectional transmission electron microscopy images indicating the presence of high-pressure crystalline phases Si-III and Si-XII following pressure release. Thus, an amorphous to crystalline phase transformation has been induced by indentation at room temperature. In contrast, no evidence of a phase transformation was observed in unrelaxed a-Si, which appeared to deform via plastic flow of the amorphous phase. Furthermore, in situ electrical measurements clearly indicate the presence of a metallic Si phase during loading of relaxed a-Si but no such behavior was observed for unrelaxed a-Si
Journal of Applied Physics | 2009
Simon Ruffell; Bianca Haberl; S Koenig; Jodie Bradby; James Williams
Thermally induced phase transformation of Si-III/Si-XII zones formed by nanoindentation has been studied during low temperature (200<T<300 °C) thermal annealing by Raman microspectroscopy and transmission electron microscopy. Two sizes of spherical indenter tips have been used to create substantially different volumes of phase transformed zones in both crystalline (c-Si) and amorphous silicon (a-Si) to study the zone size and starting matrix effects. The overall transformation is from Si-III/XII to poly- or nanocrystalline Si-I through intermediate phases of Si-XIII and Si-IV. Attempts have been made to determine the exact transformation pathways. Two scenarios are possible: either Si-XII first transforms to Si-III before transforming to Si-I through the intermediate phases or that Si-XII goes through the intermediate phases while Si-III transforms directly to Si-I. Finally, the phase transformations are slower in the larger indents and the starting matrix (crystalline or amorphous) has a substantial effe...
Journal of Applied Physics | 2009
Naoki Fujisawa; Simon Ruffell; Jodie Bradby; James Williams; Bianca Haberl; O. L. Warren
Cyclic indentation of crystalline silicon exhibits interesting pressure-induced phase-transformation behavior whereby sequential changes in the phase composition ultimately lead to a catastrophic (“pop-out”) event during subsequent cycles and complete transformation to high pressure Si-III and Si-XII phases. This study combines in situ electrical measurements with cyclic loading to monitor such phase-transformation behavior. We find that, if a pop-out is not observed on the unloading curve, the end phase is predominantly amorphous but a small and increasing volume of Si-III/Si-XII results with each cycle. At a critical Si-III/Si-XII volume, pop-out can occur on a subsequent cycle, whereafter Si-III/Si-XII dominates the indent volume.
Archive | 2014
Ludovic Rapp; Bianca Haberl; Jodie Bradby; Eugene G Gamaly; James Williams; Andrei Rode
Laser 3d Nanolithography.- A Decade of Advances in Femtosecond Laser Fabrication: Mechanisms and Applications.- Photophysics of Nanostructured Metal and Metal-Contained Composite Films.- Light Scattering by Small Particles and Their Light Heating: New Aspects of the Old Problems.- Ultrafast Laser-Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases.- Phase-Structure Changes in Optical Materials under Laser Action.- Fs Laser Induced Reversible and Irreversible Processes in the Material Bulk.- Laser Decontamination: Problems and Prospects.- Atomistic Modeling of Generation of Crystal Defects and Microstructure Development in Short-Pulse Laser Processing of Metals. Optical Breakdown in Ambient Gas and its Role in Material Processing by Short-Pulsed Lasers.- Laser -Induced Local Oxidation :Theory, Experiment and Applications.- Laser Nanostructuring of Polymers.- Selective Ablation of Thin Films by Short-Laser Pulses.- Laser Crystallization of Metals.
Scientific Reports | 2016
Thomas. B. Shiell; D.G. McCulloch; Jodie Bradby; Bianca Haberl; R. Boehler; David R. McKenzie
Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 °C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by “locking in” favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.
Journal of Applied Physics | 2015
M.S.R.N. Kiran; Tuan Tran; L. A. Smillie; Bianca Haberl; D. Subianto; James Williams; Jodie Bradby
This study uses high-temperature nanoindentation coupled with in situ electrical measurements to investigate the temperature dependence (25–200 °C) of the phase transformation behavior of diamond cubic (dc) silicon at the nanoscale. Along with in situ indentation and electrical data, ex situ characterizations, such as Raman and cross-sectional transmission electron microscopy, have been used to reveal the indentation-induced deformation mechanisms. We find that phase transformation and defect propagation within the crystal lattice are not mutually exclusive deformation processes at elevated temperature. Both can occur at temperatures up to 150 °C but to different extents, depending on the temperature and loading conditions. For nanoindentation, we observe that phase transformation is dominant below 100 °C but that deformation by twinning along {111} planes dominates at 150 °C and 200 °C. This work, therefore, provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nano...
Journal of Applied Physics | 2015
Sherman Wong; Bianca Haberl; James Williams; Jodie Bradby
The transformation of diamond-cubic silicon to the metallic β-Sn phase is known to be “sluggish,” even when the critical pressure (∼11 GPa) for the transformation is reached. In this letter, we use nanoindentation to apply pressures to just above the critical threshold. In this regime, the sample displays purely elastic behavior at zero hold time. As the hold time at maximum load is increased up to 180 s, the percentage of indents that plastically deform also increase. Interestingly, the indents deform via one of two distinct processes: either via a phase transformation to a mixed bc8/r8-Si end phase, or by initiation of crystalline defects. Raman spectroscopy and cross-sectional transmission electron microscopy are used to show that the two deformation mechanisms are mutually exclusive under the indentation conditions presented here, and elastic modelling was utilized to propose a model for this mutually exclusive behavior. Hence, this behavior enhances the potential for application of the exotic bc8/r8-Si end phase.
Applied physics reviews | 2016
Bianca Haberl; Timothy A. Strobel; Jodie Bradby
The Group 14 element silicon possesses a complex free-energy landscape with many (local) minima, allowing for the formation of a variety of unusual structures, some of which may be stabilized at ambient conditions. Such exotic silicon allotropes represent a significant opportunity to address the ever-increasing demand for novel materials with tailored functionality since these exotic forms are expected to exhibit superlative properties including optimized band gaps for solar power conversion. The application of pressure is a well-recognized and uniquely powerful method to access exotic states of silicon since it promotes large changes to atomic bonding. Conventional high-pressure syntheses, however, lack the capability to access many of these local minima and only four forms of exotic silicon allotropes have been recovered over the last 50 years. However, more recently, significant advances in high pressure methodologies and the use of novel precursor materials have yielded at least three more recoverable...