Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie J. Molaison is active.

Publication


Featured researches published by Jamie J. Molaison.


High Pressure Research | 2013

Large-volume diamond cells for neutron diffraction above 90 GPa

Reinhard Boehler; Jamie J. Molaison; A. M. dos Santos; Stanislav V. Sinogeikin; S. Machida; N. Pradhan; C. A. Tulk

Quantitative high pressure neutron-diffraction measurements have traditionally required large sample volumes of at least ∼25 mm3 due to limited neutron flux. Therefore, pressures in these experiments have been limited to below 25 GPa. In comparison, for X-ray diffraction, sample volumes in conventional diamond cells for pressures up to 100 GPa have been less than 1×10−4 mm3. Here, we report a new design of strongly supported conical diamond anvils for neutron diffraction that has reached 94 GPa with a sample volume of ∼2×10−2 mm3, a 100-fold increase. This sample volume is sufficient to measure full neutron-diffraction patterns of D2O–ice to this pressure at the high flux Spallation Neutrons and Pressure beamline at the Oak Ridge National Laboratory. This provides an almost fourfold extension of the previous pressure regime for such measurements.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neutron diffraction observations of interstitial protons in dense ice

Reinhard Boehler; C. A. Tulk; Jamie J. Molaison; Antonio M. dos Santos; Kuo Li; Russell J. Hemley

The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at ∼13 GPa and cannot be described by the conventional network structure of ice VII above ∼26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this “interstitial” ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.


Journal of Physics: Conference Series | 2010

Transmission Bragg edge spectroscopy measurements at ORNL Spallation Neutron Source

Anton S. Tremsin; Jason McPhate; J.V. Vallerga; O. H. W. Siegmund; W.B. Feller; Hassina Z. Bilheux; Jamie J. Molaison; Chris A. Tulk; Lowell Crow; Ronald G. Cooper; Dayakar Penumadu

Results of neutron transmission Bragg edge spectroscopic experiments performed at the SNAP beamline of the Spallation Neutron Source are presented. A high resolution neutron counting detector with a neutron sensitive microchannel plate and Timepix ASIC readout is capable of energy resolved two dimensional mapping of neutron transmission with spatial accuracy of ~55 μm, limited by the readout pixel size, and energy resolution limited by the duration of the initial neutron pulse. A two dimensional map of the Fe 110 Bragg edge position was obtained for a bent steel screw sample. Although the neutron pulse duration corresponded to ~30 mA energy resolution for 15.3 m flight path, the accuracy of the Bragg edge position in our measurements was improved by analytical fitting to a few mA level. A two dimensional strain map was calculated from measured Bragg edge values with an accuracy of ~few hundreds μistrain for 300s of data acquisition time.


Journal of Chemical Physics | 2012

Cage occupancies in the high pressure structure H methane hydrate: A neutron diffraction study

C. A. Tulk; Dennis D. Klug; A. M. dos Santos; G. Karotis; Jamie J. Molaison; N. Pradhan

A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Emergence of long-range order in sheets of magnetic dimers

S. Haravifard; Arnab Banerjee; J. van Wezel; D. M. Silevitch; A. M. dos Santos; J. C. Lang; Edwin Kermarrec; G. Srajer; Bruce D. Gaulin; Jamie J. Molaison; Hanna A. Dabkowska; T. F. Rosenbaum

Significance Magnetic materials are composed of individual spins that interact with each other and under suitable conditions can arrange themselves in an ordered array. When spins are confined to two-dimensional sheets, small perturbations can disrupt their order and destroy the magnetic state. We show how a set of interacting, quantum-mechanical spins placed on the corners of a square array evolves from a set of locally bonded entities to a globally ordered structure. The system stabilizes itself against fluctuations through subtle local contractions, elongations, and tilts. The combination of neutron and X-ray scattering at pressures up to 60,000 atmospheres reveals the complex interplay of structural distortions and spin alignments that permit long-range order to emerge in this model quantum magnet. Quantum spins placed on the corners of a square lattice can dimerize and form singlets, which then can be transformed into a magnetic state as the interactions between dimers increase beyond threshold. This is a strictly 2D transition in theory, but real-world materials often need the third dimension to stabilize long-range order. We use high pressures to convert sheets of Cu2+ spin 1/2 dimers from local singlets to global antiferromagnet in the model system SrCu2(BO3)2. Single-crystal neutron diffraction measurements at pressures above 5 GPa provide a direct signature of the antiferromagnetic ordered state, whereas high-resolution neutron powder and X-ray diffraction at commensurate pressures reveal a tilting of the Cu spins out of the plane with a critical exponent characteristic of 3D transitions. The addition of anisotropic, interplane, spin–orbit terms in the venerable Shastry–Sutherland Hamiltonian accounts for the influence of the third dimension.


Nature Communications | 2015

Boundaries for martensitic transition of 7 Li under pressure

Anne Marie Schaeffer; Weizhao Cai; Ella Olejnik; Jamie J. Molaison; Stanislav V. Sinogeikin; Antonio M. dos Santos; Shanti Deemyad

Physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ∼3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.


Journal of the American Chemical Society | 2017

Mechanochemical Synthesis of Carbon Nanothread Single Crystals

Xiang Li; Maria Baldini; Tao Wang; Bo Chen; Enshi Xu; Brian Vermilyea; Vincent H. Crespi; Roald Hoffmann; Jamie J. Molaison; C. A. Tulk; Stanislav V. Sinogeikin; John V. Badding

Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.


Angewandte Chemie | 2016

Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

Haiyan Zheng; Kuo Li; George D. Cody; C. A. Tulk; Xiao Dong; Guoying Gao; Jamie J. Molaison; Zhenxian Liu; Mikhail Feygenson; Wenge Yang; Ilia N. Ivanov; Leonardo Basile; Juan-Carlos Idrobo; Ho-kwang Mao

Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.


Review of Scientific Instruments | 2015

Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

Malgorzata Grazyna Makowska; Luise Theil Kuhn; Lars Nilausen Cleemann; Erik Mejdal Lauridsen; Hassina Z. Bilheux; Jamie J. Molaison; Louis J. Santodonato; Anton S. Tremsin; Mirco Grosse; Manuel Morgano; Saurabh Kabra; Markus Strobl

High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.


Review of Scientific Instruments | 2017

Novel diamond cells for neutron diffraction using multi-carat CVD anvils

R. Boehler; Jamie J. Molaison; Bianca Haberl

Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm3. High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

Collaboration


Dive into the Jamie J. Molaison's collaboration.

Top Co-Authors

Avatar

C. A. Tulk

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Antonio M. dos Santos

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. M. dos Santos

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ho-kwang Mao

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianca Haberl

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chris A. Tulk

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Pradhan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiyan Zheng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge