Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianca Maria Veneziani is active.

Publication


Featured researches published by Bianca Maria Veneziani.


Molecular Cancer Therapeutics | 2006

Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy : Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299)

Elvira Crescenzi; Angela Chiaviello; Gianfranco Canti; Elena Reddi; Bianca Maria Veneziani; Giuseppe Palumbo

We compared the effects of monotherapy (photodynamic therapy or chemotherapy) versus combination therapy (photodynamic therapy plus a specific drug) on the non–small cell lung cancer cell line H1299. Our aim was to evaluate whether the additive/synergistic effects of combination treatment were such that the cytostatic dose could be reduced without affecting treatment efficacy. Photodynamic therapy was done by irradiating Photofrin-preloaded H1299 p53/p16-null cells with a halogen lamp equipped with a bandpass filter. The cytotoxic drugs used were cis-diammine-dichloroplatinum [II] (CDDP or cisplatin) and 2′,2′-difluoro-2′-deoxycytidine (gemcitabine). Various treatment combinations yielded therapeutic effects (trypan blue dye exclusion test) ranging from additive to clearly synergistic, the most effective being a combination of photodynamic therapy and CDDP. To gain insight into the cellular response mechanisms underlying favorable outcomes, we analyzed the H1299 cell cycle profiles and the expression patterns of several key proteins after monotherapy. In our conditions, we found that photodynamic therapy with Photofrin targeted G0-G1 cells, thereby causing cells to accumulate in S phase. In contrast, low-dose CDDP killed cells in S phase, thereby causing an accumulation of G0-G1 cells (and increased p21 expression). Like photodynamic therapy, low-dose gemcitabine targeted G0-G1 cells, which caused a massive accumulation of cells in S phase (and increased cyclin A expression). Although we observed therapeutic reinforcement with both drugs and photodynamic therapy, reinforcement was more pronounced when the drug (CDDP) and photodynamic therapy exert disjointed phase-related cytotoxic activity. Thus, if photodynamic therapy is appropriately tuned, the dose of the cytostatic drug can be reduced without compromising the therapeutic response. [Mol Cancer Ther 2006;5(3):776–85]


Journal of Cellular Physiology | 2006

Anti-tumor activity of the combination of cetuximab, an anti-EGFR blocking monoclonal antibody and ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinases.

Maria Pia Morelli; Tina Cascone; Teresa Troiani; Concetta Tuccillo; Roberto Bianco; Nicola Normanno; Marco Romano; Bianca Maria Veneziani; Gabriella Fontanini; S. Gail Eckhardt; Sabino De Pacido; Giampaolo Tortora; Fortunato Ciardiello

Purpose: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF‐A) is a key regulator of tumor‐induced endothelial cell proliferation and vascular permeability. ZD6474 is an orally available, small molecule inhibitor of VEGF receptor‐2 (VEGFR‐2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti‐EGFR blocking monoclonal antibody, to determine the anti‐tumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR‐2 blockade in endothelial cells. Experimental Design: The anti‐tumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. Results: The combination of ZD6474 and cetuximab determined synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) xenografts and treated with ZD6474 and/or cetuximab for 4 weeks, a reversible tumor growth inhibition was caused by each drug. In contrast, a more significant tumor growth delay resulted from the combination of the two agents with an approximately 100–110 days increase in mice median overall survival as compared to single agent treatment. Conclusions: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR‐2 signaling as cancer therapy. J. Cell. Physiol. 208: 344–353, 2006.


Clinical Cancer Research | 2013

Sphingosine Kinase 1 Overexpression Contributes to Cetuximab Resistance in Human Colorectal Cancer Models

Roberta Rosa; Roberta Marciano; Umberto Malapelle; Luigi Formisano; Lucia Nappi; Claudia D'Amato; Valentina D'Amato; Vincenzo Damiano; Gabriella Marfe; Silvana Del Vecchio; Antonella Zannetti; Adelaide Greco; Alfonso De Stefano; Chiara Carlomagno; Bianca Maria Veneziani; Giancarlo Troncone; Sabino De Placido; Roberto Bianco

Purpose: Although the anti–EGF receptor (EGFR) monoclonal antibody cetuximab is an effective strategy in colorectal cancer therapy, its clinical use is limited by intrinsic or acquired resistance. Alterations in the “sphingolipid rheostat”—the balance between the proapoptotic molecule ceramide and the mitogenic factor sphingosine-1-phosphate (S1P)—due to sphingosine kinase 1 (SphK1) overactivation have been involved in resistance to anticancer-targeted agents. Moreover, cross-talks between SphK1 and EGFR-dependent signaling pathways have been described. Experimental design: We investigated SphK1 contribution to cetuximab resistance in colorectal cancer, in preclinical in vitro/in vivo models, and in tumor specimens from patients. Results: SphK1 was found overexpressed and overactivated in colorectal cancer cells with intrinsic or acquired resistance to cetuximab. SphK1 contribution to resistance was supported by the demonstration that SphK1 inhibition by N,N-dimethyl-sphingosine or silencing via siRNA in resistant cells restores sensitivity to cetuximab, whereas exogenous SphK1 overexpression in sensitive cells confers resistance to these agents. Moreover, treatment of resistant cells with fingolimod (FTY720), a S1P receptor (S1PR) antagonist, resulted in resensitization to cetuximab both in vitro and in vivo, with inhibition of tumor growth, interference with signal transduction, induction of cancer cells apoptosis, and prolongation of mice survival. Finally, a correlation between SphK1 expression and cetuximab response was found in colorectal cancer patients. Clin Cancer Res; 19(1); 138–47. ©2012 AACR.


British Journal of Cancer | 2014

The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models

Valentina D'Amato; Roberta Rosa; Claudia D'Amato; Luigi Formisano; Roberta Marciano; Lucia Nappi; Lucia Raimondo; C. Di Mauro; Alberto Servetto; Celeste Fusciello; Bianca Maria Veneziani; S. De Placido; R. Bianco

Background:Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance.Methods:Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo.Results:Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival.Conclusions:Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness.


Breast Cancer Research | 2014

Epidermal growth factor-receptor activation modulates Src-dependent resistance to lapatinib in breast cancer models

Luigi Formisano; Lucia Nappi; Roberta Rosa; Roberta Marciano; Claudia D’Amato; Valentina D’Amato; Vincenzo Damiano; Lucia Raimondo; Francesca Iommelli; Antonella Scorziello; Giancarlo Troncone; Bianca Maria Veneziani; Sarah J. Parsons; Sabino De Placido; Roberto Bianco

IntroductionSrc tyrosine kinase overactivation has been correlated with a poor response to human epidermal growth factor receptor 2 (HER2) inhibitors in breast cancer. To identify the mechanism by which Src overexpression sustains this resistance, we tested a panel of breast cancer cell lines either sensitive or resistant to lapatinib.MethodsTo determine the role of Src in lapatinib resistance, we evaluated the effects of Src inhibition/silencing in vitro on survival, migration, and invasion of lapatinib-resistant cells. In vivo experiments were performed in JIMT-1 lapatinib-resistant cells orthotopically implanted in nude mice. We used artificial metastasis assays to evaluate the effect of Src inhibition on the invasiveness of lapatinib-resistant cells. Src-dependent signal transduction was investigated with Western blot and ELISA analyses.ResultsSrc activation was higher in lapatinib-resistant than in lapatinib-sensitive cells. The selective small-molecule Src inhibitor saracatinib combined with lapatinib synergistically inhibited the proliferation, migration, and invasion of lapatinib-resistant cells. Saracatinib combined with lapatinib significantly prolonged survival of JIMT-1-xenografted mice compared with saracatinib alone, and impaired the formation of lung metastases. Unexpectedly, in lapatinib-resistant cells, Src preferentially interacted with epidermal growth factor receptor (EGFR) rather than with HER2. Moreover, EGFR targeting and lapatinib synergistically inhibited survival, migration, and invasion of resistant cells, thereby counteracting Src-mediated resistance. These findings demonstrate that Src activation in lapatinib-resistant cells depends on EGFR-dependent rather than on HER2-dependent signaling.ConclusionsComplete pharmacologic EGFR/HER2 inhibition is required to reverse Src-dependent resistance to lapatinib in breast cancer.


Breast Cancer Research | 2015

Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis.

Mario Giuliano; Sabrina Herrera; Pavel Christiny; Chad A. Shaw; Chad J. Creighton; Tamika Mitchell; Raksha Bhat; Xiaomei Zhang; Sufeng Mao; Lacey E. Dobrolecki; Ahmed Al-rawi; Fengju Chen; Bianca Maria Veneziani; Xiang H.-F. Zhang; Susan G. Hilsenbeck; Alejandro Contreras; Carolina Gutierrez; Rinath Jeselsohn; Mothaffar F. Rimawi; C. Kent Osborne; Michael T. Lewis; Rachel Schiff; Meghana V. Trivedi

IntroductionReal-time monitoring of biologic changes in tumors may be possible by investigating the transitional cells such as circulating tumor cells (CTCs) and disseminated tumor cells in bone marrow (BM-DTCs). However, the small numbers of CTCs and the limited access to bone marrow aspirates in cancer patients pose major hurdles. The goal of this study was to determine whether breast cancer (BC) patient-derived xenograft (PDX) mice could provide a constant and renewable source of CTCs and BM-DTCs, thereby representing a unique system for the study of metastatic processes.MethodsCTCs and BM-DTCs, isolated from BC PDX-bearing mice, were identified by immunostaining for human pan-cytokeratin and nuclear counterstaining of red blood cell-lysed blood and bone marrow fractions, respectively. The rate of lung metastases (LM) was previously reported in these lines. Associations between the presence of CTCs, BM-DTCs, and LM were assessed by the Fisher’s Exact and Cochran-Mantel-Haenszel tests. Two separate genetic signatures associated with the presence of CTC clusters and with lung metastatic potential were computed by using the expression arrays of primary tumors from different PDX lines and subsequently overlapped to identify common genes.ResultsIn total, 18 BC PDX lines were evaluated. CTCs and BM-DTCs, present as either single cells or clusters, were detected in 83% (15 of 18) and 62.5% (10 to16) of the lines, respectively. A positive association was noted between the presence of CTCs and BM-DTCs within the same mice. LM was previously found in 9 of 18 (50%) lines, of which all nine had detectable CTCs. The presence of LM was strongly associated with the detection of CTC clusters but not with individual cells or detection of BM-DTCs. Overlapping of the two genetic signatures of the primary PDX tumors associated with the presence of CTC clusters and with lung metastatic potential identified four genes (HLA-DP1A, GJA1, PEG3, and XIST). This four-gene profile predicted distant metastases-free survival in publicly available datasets of early BC patients.ConclusionThis study suggests that CTCs and BM-DTCs detected in BC PDX-bearing mice may represent a valuable and unique preclinical model for investigating the role of these rare cells in tumor metastases.


Cytometry Part A | 2012

Cytometric and biochemical characterization of human breast cancer cells reveals heterogeneous myoepithelial phenotypes

Felicia Leccia; Agostina Nardone; Sara Corvigno; Luigi Del Vecchio; Sabino De Placido; F. Salvatore; Bianca Maria Veneziani

To determine whether cell cultures maintain the cellular heterogeneity of primary tissues and may therefore be used for in vitro modeling of breast cancer subtypes, we evaluated the expression of a cell surface marker panel in breast cancer cell cultures derived from various subtypes of human breast carcinoma. We used a four‐color flow cytometry strategy to immunophenotype seven human breast cancer cell cultures and four reference breast cancer cell lines. We analyzed 28 surface markers selected based on their potential to distinguish epithelial or mesenchymal lineage, to identify stem cell populations, and to mediate cell adhesion and migration. We determined their ability to form mammospheres and analyzed luminal cytokeratins CK18, CK19, and myoepithelial/basal CK5, SMA (alpha‐smooth muscle actin), and vimentin expression by western blot. All cell surface markers showed a unimodal profile. Ten/28 markers were homogenously expressed. Four (CD66b, CD66c, CD165, CD324) displayed negative/low expression. Six (CD29, CD55, CD59, CD81, CD151, CD166) displayed homogenous high expression. Eighteen (CD9, CD10, CD24, CD26, CD44, CD47, CD49b, CD49f, CD54, CD61, CD90, CD105, CD133, CD164, CD184, CD200, CD227, CD326) were heterogeneously expressed. Spearmans rank test demonstrated a significant correlation (p< 0.001) between mesenchymal phenotype and breast cancer cell cultures. Breast cancer cell cultures, all CD44+, displayed concomitant high expression of only three antigens (CD10, CD54, CD90), and low expression of CD326; cell cultures formed mammospheres and expressed CK5, SMA and vimentin, and were weakly CK19‐positive. We demonstrate that breast cancer cell cultures preserve inter‐tumor heterogeneity and express stem/progenitor markers that can be identified, quantified and categorized by flow cytometry. Therefore, cell cultures can be used for in vitro modeling of breast cancer subtypes; immunophenotyping may mirror breast cancer heterogeneity and reveal molecular characteristics of individual tumors useful for testing target therapy.


British Journal of Cancer | 2014

Inhibition of Hedgehog signalling by NVP-LDE225 (Erismodegib) interferes with growth and invasion of human renal cell carcinoma cells

Claudia D'Amato; Roberta Rosa; Roberta Marciano; Valentina D'Amato; Luigi Formisano; Lucia Nappi; Lucia Raimondo; C. Di Mauro; Alberto Servetto; F Fulciniti; A Cipolletta; Caterina Bianco; Fortunato Ciardiello; Bianca Maria Veneziani; S. De Placido; Roberto Bianco

Background:Multiple lines of evidence support that the Hedgehog (Hh) signalling has a role in the maintenance and progression of different human cancers. Therefore, inhibition of the Hh pathway represents a valid anticancer therapeutic approach for renal cell carcinoma (RCC) patients. NVP-LDE225 is a Smoothened (Smo) antagonist that induces dose-related inhibition of Hh and Smo-dependent tumour growth.Methods:We assayed the effects of NVP-LDE225 alone or in combination with everolimus or sunitinib on the growth and invasion of human RCC models both in vitro and in vivo. To this aim, we used a panel of human RCC models, comprising cells with acquired resistance to sunitinib – a multiple tyrosine kinase inhibitor approved as a first-line treatment for RCC.Results:NVP-LDE225 cooperated with either everolimus or sunitinib to inhibit proliferation, migration, and invasion of RCC cells even in sunitinib-resistant (SuR) cells. Some major transducers involved in tumour cell motility, including paxillin, were also efficiently inhibited by the combination therapy, as demonstrated by western blot and confocal microscopy assays. Moreover, these combined treatments inhibited tumour growth and increased animal survival in nude mice xenografted with SuR RCC cells. Finally, lung micrometastasis formation was reduced when mice were treated with NVP-LDE225 plus everolimus or sunitinib, as evidenced by artificial metastatic assays.Conclusions:Hedgehog inhibition by NVP-LDE225 plus sunitinib or everolimus bolsters antitumour activity by interfering with tumour growth and metastatic spread, even in SuR cells. Thus, this new evidence puts forward a new promising therapeutic approach for RCC patients.


Oncotarget | 2017

Epithelial-mesenchymal transition in prostate cancer: An overview

Micaela Montanari; Sabrina Rossetti; Carla Cavaliere; Carmine D’Aniello; Maria Gabriella Malzone; Daniela Vanacore; Rossella Di Franco; Elvira La Mantia; Gelsomina Iovane; Raffaele Piscitelli; Raffaele Muscariello; Massimiliano Berretta; Sisto Perdonà; Paolo Muto; Gerardo Botti; Attilio Antonio Montano Bianchi; Bianca Maria Veneziani; Gaetano Facchini

Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer. Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance. In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.


Oncotarget | 2017

Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences

Vincenzo Quagliariello; Sabrina Rossetti; Carla Cavaliere; Rossella Di Palo; Elvira Lamantia; Luigi Castaldo; Flavia Nocerino; Gianluca Ametrano; Francesca Cappuccio; Gabriella Malzone; Micaela Montanari; Daniela Vanacore; Francesco Jacopo Romano; Raffaele Piscitelli; Gelsomina Iovane; Maria Filomena Pepe; Massimiliano Berretta; Carmine D’Aniello; Sisto Perdonà; Paolo Muto; Gerardo Botti; Gennaro Ciliberto; Bianca Maria Veneziani; Francesco De Falco; Piera Maiolino; Michele Caraglia; Maurizio Montella; Rosario Vincenzo Iaffaioli; Gaetano Facchini

This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the worlds leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease.

Collaboration


Dive into the Bianca Maria Veneziani's collaboration.

Top Co-Authors

Avatar

Sabino De Placido

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Roberto Bianco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Formisano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Marciano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Rosa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Damiano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alberto Servetto

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carla Cavaliere

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fortunato Ciardiello

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge