Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Marciano is active.

Publication


Featured researches published by Roberta Marciano.


British Journal of Cancer | 2008

Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs

Roberto Bianco; Sonia Garofalo; Roberta Rosa; Vincenzo Damiano; Teresa Gelardi; G Daniele; Roberta Marciano; Fortunato Ciardiello; Giampaolo Tortora

Inhibition of a single transduction pathway is often inefficient due to activation of alternative signalling. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation, survival and angiogenic pathways and has been implicated in the resistance to EGFR inhibitors. Thus, mTOR blockade is pursued to interfere at multiple levels with tumour growth. We used everolimus (RAD001) to inhibit mTOR, alone or in combination with anti-EGFR drugs gefitinib or cetuximab, on human cancer cell lines sensitive and resistant to EGFR inhibitors, both in vitro and in vivo. We demonstrated that everolimus is active against EGFR-resistant cancer cell lines and partially restores the ability of EGFR inhibitors to inhibit growth and survival. Everolimus reduces the expression of EGFR-related signalling effectors and VEGF production, inhibiting proliferation and capillary tube formation of endothelial cells, both alone and in combination with gefitinib. Finally, combination of everolimus and gefitinib inhibits growth of GEO and GEO-GR (gefitinib resistant) colon cancer xenografts, activation of signalling proteins and VEGF secretion. Targeting mTOR pathway with everolimus overcomes resistance to EGFR inhibitors and produces a cooperative effect with EGFR inhibitors, providing a valid therapeutic strategy to be tested in a clinical setting.


Clinical Cancer Research | 2013

Sphingosine Kinase 1 Overexpression Contributes to Cetuximab Resistance in Human Colorectal Cancer Models

Roberta Rosa; Roberta Marciano; Umberto Malapelle; Luigi Formisano; Lucia Nappi; Claudia D'Amato; Valentina D'Amato; Vincenzo Damiano; Gabriella Marfe; Silvana Del Vecchio; Antonella Zannetti; Adelaide Greco; Alfonso De Stefano; Chiara Carlomagno; Bianca Maria Veneziani; Giancarlo Troncone; Sabino De Placido; Roberto Bianco

Purpose: Although the anti–EGF receptor (EGFR) monoclonal antibody cetuximab is an effective strategy in colorectal cancer therapy, its clinical use is limited by intrinsic or acquired resistance. Alterations in the “sphingolipid rheostat”—the balance between the proapoptotic molecule ceramide and the mitogenic factor sphingosine-1-phosphate (S1P)—due to sphingosine kinase 1 (SphK1) overactivation have been involved in resistance to anticancer-targeted agents. Moreover, cross-talks between SphK1 and EGFR-dependent signaling pathways have been described. Experimental design: We investigated SphK1 contribution to cetuximab resistance in colorectal cancer, in preclinical in vitro/in vivo models, and in tumor specimens from patients. Results: SphK1 was found overexpressed and overactivated in colorectal cancer cells with intrinsic or acquired resistance to cetuximab. SphK1 contribution to resistance was supported by the demonstration that SphK1 inhibition by N,N-dimethyl-sphingosine or silencing via siRNA in resistant cells restores sensitivity to cetuximab, whereas exogenous SphK1 overexpression in sensitive cells confers resistance to these agents. Moreover, treatment of resistant cells with fingolimod (FTY720), a S1P receptor (S1PR) antagonist, resulted in resensitization to cetuximab both in vitro and in vivo, with inhibition of tumor growth, interference with signal transduction, induction of cancer cells apoptosis, and prolongation of mice survival. Finally, a correlation between SphK1 expression and cetuximab response was found in colorectal cancer patients. Clin Cancer Res; 19(1); 138–47. ©2012 AACR.


British Journal of Cancer | 2014

The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models

Valentina D'Amato; Roberta Rosa; Claudia D'Amato; Luigi Formisano; Roberta Marciano; Lucia Nappi; Lucia Raimondo; C. Di Mauro; Alberto Servetto; Celeste Fusciello; Bianca Maria Veneziani; S. De Placido; R. Bianco

Background:Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance.Methods:Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo.Results:Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival.Conclusions:Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness.


Breast Cancer Research | 2014

Epidermal growth factor-receptor activation modulates Src-dependent resistance to lapatinib in breast cancer models

Luigi Formisano; Lucia Nappi; Roberta Rosa; Roberta Marciano; Claudia D’Amato; Valentina D’Amato; Vincenzo Damiano; Lucia Raimondo; Francesca Iommelli; Antonella Scorziello; Giancarlo Troncone; Bianca Maria Veneziani; Sarah J. Parsons; Sabino De Placido; Roberto Bianco

IntroductionSrc tyrosine kinase overactivation has been correlated with a poor response to human epidermal growth factor receptor 2 (HER2) inhibitors in breast cancer. To identify the mechanism by which Src overexpression sustains this resistance, we tested a panel of breast cancer cell lines either sensitive or resistant to lapatinib.MethodsTo determine the role of Src in lapatinib resistance, we evaluated the effects of Src inhibition/silencing in vitro on survival, migration, and invasion of lapatinib-resistant cells. In vivo experiments were performed in JIMT-1 lapatinib-resistant cells orthotopically implanted in nude mice. We used artificial metastasis assays to evaluate the effect of Src inhibition on the invasiveness of lapatinib-resistant cells. Src-dependent signal transduction was investigated with Western blot and ELISA analyses.ResultsSrc activation was higher in lapatinib-resistant than in lapatinib-sensitive cells. The selective small-molecule Src inhibitor saracatinib combined with lapatinib synergistically inhibited the proliferation, migration, and invasion of lapatinib-resistant cells. Saracatinib combined with lapatinib significantly prolonged survival of JIMT-1-xenografted mice compared with saracatinib alone, and impaired the formation of lung metastases. Unexpectedly, in lapatinib-resistant cells, Src preferentially interacted with epidermal growth factor receptor (EGFR) rather than with HER2. Moreover, EGFR targeting and lapatinib synergistically inhibited survival, migration, and invasion of resistant cells, thereby counteracting Src-mediated resistance. These findings demonstrate that Src activation in lapatinib-resistant cells depends on EGFR-dependent rather than on HER2-dependent signaling.ConclusionsComplete pharmacologic EGFR/HER2 inhibition is required to reverse Src-dependent resistance to lapatinib in breast cancer.


British Journal of Cancer | 2012

KRAS mutation detection by high-resolution melting analysis significantly predicts clinical benefit of cetuximab in metastatic colorectal cancer

Umberto Malapelle; Chiara Carlomagno; Maria Salatiello; A. De Stefano; C. De Luca; Roberto Bianco; Roberta Marciano; Carolina Cimminiello; Claudio Bellevicine; S. De Placido; Giancarlo Troncone

Background:Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies are restricted to KRAS wild-type (WT) metastatic colorectal cancers (mCRCs), usually identified by direct sequencing, that may yield false negative results because of genetic heterogeneity within the tumour. We evaluated the efficiency of high-resolution melting analysis (HRMA) in identifying KRAS-mutant (MUT) tumours.Methods:We considered 50 mCRC patients scored as KRAS-WT by direct sequencing and treated with cetuximab-containing chemotherapy, and tested the correlations between HRMA findings and response rate (RR), progression-free (PFS) and overall survival (OS).Results:Aberrant melting curves were detected in four (8%) cases; gene cloning confirmed these mutations. Response rate (RR) of HRMA KRAS-WT patients was 28.3%. There was no response in HRMA KRAS-MUT patients. Disease control rate (responsive plus stable disease) was 58.7% in HRMA KRAS-WT patients and 25% in HRMA KRAS-MUT patients. There was no correlation between HRMA KRAS status and RR (P=0.287) or disease control (P=0.219). Median PFS (4.8 vs 2.3 months; hazard ratio (HR)=0.29, P=0.02) and OS (11.0 vs 2.7 months; HR=0.11, P=0.03) were significantly longer for the HRMA KRAS-WT than for HRMA KRAS-MUT patients.Conclusions:High-resolution melting analysis identified 8% more KRAS-MUT patients not responding to cetuximab-containing regimens, suggesting that HRMA may be more effective than direct sequencing in selecting patients for anti-EGFR antibodies.


British Journal of Cancer | 2014

Inhibition of Hedgehog signalling by NVP-LDE225 (Erismodegib) interferes with growth and invasion of human renal cell carcinoma cells

Claudia D'Amato; Roberta Rosa; Roberta Marciano; Valentina D'Amato; Luigi Formisano; Lucia Nappi; Lucia Raimondo; C. Di Mauro; Alberto Servetto; F Fulciniti; A Cipolletta; Caterina Bianco; Fortunato Ciardiello; Bianca Maria Veneziani; S. De Placido; Roberto Bianco

Background:Multiple lines of evidence support that the Hedgehog (Hh) signalling has a role in the maintenance and progression of different human cancers. Therefore, inhibition of the Hh pathway represents a valid anticancer therapeutic approach for renal cell carcinoma (RCC) patients. NVP-LDE225 is a Smoothened (Smo) antagonist that induces dose-related inhibition of Hh and Smo-dependent tumour growth.Methods:We assayed the effects of NVP-LDE225 alone or in combination with everolimus or sunitinib on the growth and invasion of human RCC models both in vitro and in vivo. To this aim, we used a panel of human RCC models, comprising cells with acquired resistance to sunitinib – a multiple tyrosine kinase inhibitor approved as a first-line treatment for RCC.Results:NVP-LDE225 cooperated with either everolimus or sunitinib to inhibit proliferation, migration, and invasion of RCC cells even in sunitinib-resistant (SuR) cells. Some major transducers involved in tumour cell motility, including paxillin, were also efficiently inhibited by the combination therapy, as demonstrated by western blot and confocal microscopy assays. Moreover, these combined treatments inhibited tumour growth and increased animal survival in nude mice xenografted with SuR RCC cells. Finally, lung micrometastasis formation was reduced when mice were treated with NVP-LDE225 plus everolimus or sunitinib, as evidenced by artificial metastatic assays.Conclusions:Hedgehog inhibition by NVP-LDE225 plus sunitinib or everolimus bolsters antitumour activity by interfering with tumour growth and metastatic spread, even in SuR cells. Thus, this new evidence puts forward a new promising therapeutic approach for RCC patients.


Oncotarget | 2015

Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status

Luigi Formisano; Valentina D’Amato; Alberto Servetto; Simona Brillante; Lucia Raimondo; Concetta Di Mauro; Roberta Marciano; Roberta Clara Orsini; Sandro Cosconati; Antonio Randazzo; Sarah J. Parsons; Nunzia Montuori; Bianca Maria Veneziani; Sabino De Placido; Roberta Rosa; Roberto Bianco

Resistance to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, often related to Ras or secondary EGFR mutations, is a relevant clinical issue in Non-Small Cell Lung Cancer (NSCLC). Although Src TK has been involved in such resistance, clinical development of its inhibitors has been so far limited. To better define the molecular targets of the Src TKIs saracatinib, dasatinib and bosutinib, we used a variety of in vitro/in vivo studies. Kinase assays supported by docking analysis demonstrated that all the compounds directly inhibit EGFR TK variants. However, in live cells only saracatinib efficiently reduced EGFR activation, while dasatinib was the most effective agent in inhibiting Src TK. Consistently, a pronounced anti-proliferative effect was achieved with saracatinib, in EGFR mutant cells, or with dasatinib, in wt EGFR/Ras mutant cells, poorly dependent on EGFR and erlotinib-resistant. We then identified the most effective drug combinations to overcome resistance to EGFR inhibitors, both in vitro and in nude mice: in T790M EGFR erlotinib-resistant cells, saracatinib with the anti-EGFR mAb cetuximab; in Ras mutant erlotinib-resistant models, dasatinib with the MEK inhibitor selumetinib. Src inhibitors may act with different mechanisms in NSCLCs, depending on EGFR/Ras mutational profile, and may be integrated with EGFR or MEK inhibitors for different cohorts of NSCLCs.


British Journal of Cancer | 2013

Toll-like receptor 9 agonist IMO cooperates with everolimus in renal cell carcinoma by interfering with tumour growth and angiogenesis

Vincenzo Damiano; Roberta Rosa; Luigi Formisano; Lucia Nappi; Teresa Gelardi; Roberta Marciano; Immacolata Cozzolino; Giancarlo Troncone; Sudhir Agrawal; Bianca Maria Veneziani; S. De Placido; Roberto Bianco; Giampaolo Tortora

Background:Targeting the mammalian target of rapamycin by everolimus is a successful approach for renal cell carcinoma (RCC) therapy. The Toll-like receptor 9 agonist immune modulatory oligonucleotide (IMO) exhibits direct antitumour and antiangiogenic activity and cooperates with both epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) inhibitors.Methods:We tested the combination of IMO and everolimus on models of human RCC with different Von-Hippel Lindau (VHL) gene status, both in vitro and in nude mice. We studied their direct antiangiogenic effects on human umbilical vein endothelial cells.Results:Both IMO and everolimus inhibited in vitro growth and survival of RCC cell lines, and their combination produced a synergistic inhibitory effect. Moreover, everolimus plus IMO interfered with EGFR-dependent signaling and reduced VEGF secretion in both VHL wild-type and mutant cells. In RCC tumour xenografts, IMO plus everolimus caused a potent and long-lasting cooperative antitumour activity, with reduction of tumour growth, prolongation of mice survival and inhibition of signal transduction. Furthermore, IMO and everolimus impaired the main endothelial cell functions.Conclusion:A combined treatment with everolimus and IMO is effective in VHL wild-type and mutant models of RCC by interfering with tumour growth and angiogenesis, thus representing a potentially effective, rationale-based combination to be translated in the clinical setting.


British Journal of Cancer | 2017

Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers

Concetta Di Mauro; Roberta Di Rosa; Valentina D'Amato; Paola Ciciola; Alberto Servetto; Roberta Marciano; Roberta Clara Orsini; Luigi Formisano; Sandro De Falco; Valeria Cicatiello; Maurizio Di Bonito; Monica Cantile; Francesca Collina; Angela Chambery; Bianca Maria Veneziani; Sabino De Placido; Roberto Bianco

Background:Several evidences suggest a marked angiogenic dependency in triple-negative breast cancer (TNBC) tumorigenesis and a potential sensitivity to anti-angiogenic agents. Herein, the putative role of Hedgehog (Hh) pathway in regulating TNBC-dependent angiogenesis was investigated.Methods:Expression and regulation of the Hh pathway transcription factor glioma-associated oncogene homolog1 protein (GLI1) were studied on the endothelial compartment and on TNBC-initiated angiogenesis. To evaluate the translational relevance of our findings, the combination of paclitaxel with the Smo inhibitor NVP-LDE225 was tested in TNBC xenografted mice.Results:Tissue microarray analysis on 200 TNBC patients showed GLI1 overexpression paired with vascular endothelial growth factor receptor 2 (VEGFR2) expression. In vitro, Hh pathway promotes TNBC progression in an autocrine manner, regulating the VEGF/VEGFR2 loop on cancer cell surface, and in a paracrine manner, orchestrating tumour vascularisation. These effects were counteracted by Smo pharmacological inhibition. In TNBC xenografted mice, scheduling NVP-LDE225 rather than bevacizumab provided a better sustained inhibition of TNBC cells proliferation and endothelial cells organisation.Conclusions:This study identifies the Hh pathway as one of the main regulators of tumour angiogenesis in TNBC, thus suggesting Hh inhibition as a potential new anti-angiogenic therapeutic option to be clinically investigated in GLI1 overexpressing TNBC patients.


Oncotarget | 2016

Everolimus induces Met inactivation by disrupting the FKBP12/Met complex

Lucia Raimondo; Valentina D'Amato; Alberto Servetto; Roberta Rosa; Roberta Marciano; Luigi Formisano; Concetta Di Mauro; Roberta Clara Orsini; Priscilla Cascetta; Paola Ciciola; Ana Paula De Maio; Maria Flavia Di Renzo; Sandro Cosconati; Agostino Bruno; Antonio Randazzo; Filomena Napolitano; Nunzia Montuori; Bianca Maria Veneziani; Sabino De Placido; Roberto Bianco

Inhibition of the mechanistic target of rapamycin (mTOR) is a promising treatment strategy for several cancer types. Rapamycin derivatives such as everolimus are allosteric mTOR inhibitors acting through interaction with the intracellular immunophilin FKBP12, a prolyl isomerase with different cellular functions. Although mTOR inhibitors have significantly improved survival of different cancer patients, resistance and lack of predictive factors of response remain unsolved issues. To elucidate the mechanisms of resistance to everolimus, we evaluated Met activation in everolimus-sensitive/resistant human cancer cells, in vitro and in vivo. Biochemical and computational analyses were performed. Everolimus-resistant cells were xenografted into mice (10/group) and studied for their response to everolimus and Met inhibitors. The statistical significance of the in vitro results was evaluated by Students t test. Everolimus reduced Met phosphorylation in everolimus-sensitive cells. This event was mediated by the formation of a Met-FKBP12 complex, which in turn is disrupted by everolimus. Aberrant Met activation in everolimus-resistant cells and overexpression of wild-type/mutant Met caused everolimus resistance. Pharmacological inhibition and RNA silencing of Met are effective in condition of everolimus resistance (P<0.01). In mice xenografted with everolimus-resistant cells, the combination of everolimus with the Met inhibitor PHA665752 reduced tumor growth and induced a statistically significant survival advantage (combination vs control P=0.0005). FKBP12 binding is required for full Met activation and everolimus can inhibit Met. Persistent Met activation might sustain everolimus resistance. These results identify a novel everolimus mechanism of action and suggest the development of clinical strategies based on Met inhibitors in everolimus-resistant cancers.

Collaboration


Dive into the Roberta Marciano's collaboration.

Top Co-Authors

Avatar

Roberto Bianco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Rosa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Formisano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alberto Servetto

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Bianca Maria Veneziani

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Sabino De Placido

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Valentina D'Amato

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Damiano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

S. De Placido

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

C. Di Mauro

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge