Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianli Xu is active.

Publication


Featured researches published by Bianli Xu.


The Journal of Infectious Diseases | 2013

Human-to-Human Transmission of Severe Fever With Thrombocytopenia Syndrome Bunyavirus Through Contact With Infectious Blood

Xiaoyan Tang; Weili Wu; Haifeng Wang; Yanhua Du; Licheng Liu; Kai Kang; Xueyong Huang; Hong Ma; Feng Mu; Shiqiang Zhang; Guohua Zhao; Ning Cui; Bao-Ping Zhu; Aiguo You; Haomin Chen; Guohua Liu; Weijun Chen; Bianli Xu

We investigated an outbreak of severe fever with thrombocytopenia syndrome (SFTS) that occurred during May and June 2010, to identify the mode of transmission. Contact with the index patients blood was significantly associated with development of SFTS (P = .01, by the χ(2) test for linear trend); the frequency of contact with the index patients blood increased the risk of SFTS in a dose-response manner (P = .03, by the χ(2) test for linear trend). We concluded that human-to-human transmission caused this cluster of cases.


Journal of Clinical Microbiology | 2009

Molecular Characterization and Antimicrobial Susceptibility of Salmonella Isolates from Infections in Humans in Henan Province, China

Shengli Xia; Rene S. Hendriksen; Zhiqiang Xie; Lili Huang; Jin Zhang; Wanshen Guo; Bianli Xu; Lu Ran; Frank Møller Aarestrup

ABSTRACT We characterized 208 human Salmonella isolates from 2006 to 2007 and 27 human Salmonella enterica serovar Typhimurium isolates from 1987 to 1993 from Henan Province, China, by serotyping, by antimicrobial susceptibility testing, and, for the most common serovars, by pulsed-field gel electrophoresis (PFGE). The most common serovars among the 2006-2007 isolates were S. enterica serovar Typhimurium (27%), S. enterica serovar Enteritidis (17%), S. enterica serovar Derby (10%), S. enterica serovar Indiana (6%), and S. enterica serovar Litchfield (6%). A high percentage of the isolates were multiple-drug resistant, and 54% were resistant to both nalidixic acid and ciprofloxacin. Of these, 42% were resistant to a high level of ciprofloxacin (MIC > 4 μg/ml), whereas for the remaining isolates, the MICs ranged from 0.125 to 2 μg/ml. Five isolates (2%) were ceftiofur resistant and harbored blaCTX-M14 or blaCTX-M15. With the possible exception of the quinolones and cephalosporins, the 1987-1993 S. enterica serovar Typhimurium isolates were almost as resistant as the recent isolates. PFGE typing of S. enterica serovar Typhimurium showed that the most common cluster predominated over time. Two other clusters have emerged, and another cluster has disappeared.


Journal of Clinical Microbiology | 2011

Prevalence and Characterization of Human Shigella Infections in Henan Province, China, in 2006

Shengli Xia; Bianli Xu; Lili Huang; Jia-Yong Zhao; Lu Ran; Jin Zhang; Haomin Chen; Chaiwat Pulsrikarn; Srirat Pornruangwong; Frank Møller Aarestrup; Rene S. Hendriksen

ABSTRACT In 2006, 3,531 fecal samples were collected from patients with diarrhea in Henan Province, China. A total of 467 (13.2%) Shigella strains were isolated and serotyped. Seventy-one Shigella flexneri strains were characterized by MIC determination, pulsed-field gel electrophoresis (PFGE), and detection of genes encoding cephalosporin resistance. Most infections were caused by S. flexneri variant X [IV:(7),8] (27.6%), S. sonnei (24.2%), and S. flexneri 2a (20.8%). However, large regional differences were observed. Significantly higher odds (2.0) of females compared to males were infected with S. flexneri 2a. Untypeable S. flexneri (−:6) isolates were absent among males, as were untypeable S. flexneri [I:(7),8] isolates among females. Patient ages ranged from 2 months to 82 years, with 231 subjects (49.7%) <5 years of age. Most of the patients were male (62.1% [n = 290]). Infections peaked in July; week 27 with 38 cases (8.1%). All of the 71 S. flexneri conferred resistance to nalidixic acid; in addition, 21% (n = 15) and 79% (n = 56) were high- and low-level resistant to ciprofloxacin, respectively. Six S. flexneri isolates {serotype 2b [II:7,(8)] and 2b [II:(3),4;7,(8)]} harbored the bla CTX-M-14 or bla CTX-M-15 gene. A total of 52 unique XbaI PFGE patterns were observed among the 71 S. flexneri isolates with 11 distinct PFGE clusters. This study revealed a high prevalence of shigellosis with geographical differences in the distribution of serotypes in the distribution of serotypes and also differences in comparisons by gender. A high frequency of resistance, including 100% resistance to ciprofloxacin and resistance to extended-spectrum cephalosporins, was observed. We detected several isolates exhibiting the same PFGE type and MIC profile, indicating multiple undetected outbreaks.


Virus Genes | 2013

Detection of human enterovirus 71 and Coxsackievirus A16 in an outbreak of hand, foot, and mouth disease in Henan Province, China in 2009

Xingliang Fan; Jun Jiang; Yanjing Liu; Xueyong Huang; Pengzhi Wang; Licheng Liu; Junzhi Wang; Weijun Chen; Weili Wu; Bianli Xu

During 2009, an outbreak of hand, foot, and mouth disease (HFMD) enrolled 490 people in Henan Province, causing the death of two children. In order to investigate the pathogens responsible for this outbreak and characterize their genetic characteristics, a total of 508 clinical specimens (stool, throat swab, and vesicle fluid) were collected from the Center for Disease Control and Prevention of Henan Province. Virological investigations (virus isolation, conventional reverse transcription PCR, and real-time reverse transcription PCR) and phylogenetic analysis were performed. It was found that human enterovirus 71 (EV71) was the main pathogen causing this outbreak, while Coxsackievirus A16 (CoxA16) played only a subsidiary role. Phylogenetic analysis of 24 EV71 isolates collected during the period from March 11 to July 24, 2009 showed that they belonged to subgenotypes C4 and C5. Our study for the first time characterizes the epidemiology of HFMD and EV71 infection in Henan Province in 2009 and provides the first direct evidence of the genotype of EV71 circulating in Henan Province at that time. Our study should facilitate the development of public health measures for the control and prevention of HFMD and EV71 infection in at-risk individuals in China.


Scientific Reports | 2015

Epidemiological and Etiological Characteristics of Hand, Foot, and Mouth Disease in Henan, China, 2008–2013

Xueyong Huang; Haiyan Wei; Shuyu Wu; Yanhua Du; Licheng Liu; Jia Su; Yu-Ling Xu; Haifeng Wang; Xingle Li; Yanxia Wang; Guohua Liu; Weijun Chen; John D. Klena; Bianli Xu

Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by enteroviruses. HFMD outbreaks and reported cases have sharply increased in China since 2008. Epidemiological and clinical data of HFMD cases reported in Henan Province were collected from 2008 to 2013. Clinical specimens were obtained from a subset of these cases. Descriptive epidemiological methods were used to analyze the time, region and population distribution. The VP1 gene from EV71 and CA16 isolates was amplified, and the sequences were analyzed. 400,264 cases of HFMD were reported in this study, including 22,309 severe and 141 fatal cases. Incidence peaked between April and May. Laboratory confirmation was obtained for 27,692 (6.9%) cases; EV71, CA16, and other enteroviruses accounted for 59.5%, 14.1%, 26.4%, respectively. Phylogenetic analysis revealed that EV71 belonged to the C4a evolution branch of C4 sub-genotype and CA16 belonged to subtype B1a or B1b. The occurrence of HFMD in Henan was closely related to season, age and region distribution. Children under five were the most affected population. The major pathogens causing HFMD and their genotypes have not notably changed in Henan. The data strongly support the importance of EV71 vaccination in a high population density area such as Henan, China.


Virology | 2013

Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

Weibin Hu; Aizhong Chen; Yi Miao; Shengli Xia; Zhiyang Ling; Ke Xu; Tongyan Wang; Ying Xu; Jun Cui; Hongqiang Wu; Guiyu Hu; Lin Tian; Lingling Wang; Yuelong Shu; Xiaowei Ma; Bianli Xu; Jin Zhang; Xiaojun Lin; Chao Bian; Bing Sun

Abstract Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.


Journal of Clinical Microbiology | 2015

Rapid, Sensitive, and Specific Escherichia coli H Antigen Typing by Matrix-Assisted Laser Desorption Ionization–Time of Flight-Based Peptide Mass Fingerprinting

Huixia Chui; Michael Chan; Drexler Hernandez; Patrick Chong; Stuart McCorrister; Alyssia Robinson; Matthew Walker; Lorea Peterson; Sam Ratnam; David J. M. Haldane; Sadjia Bekal; John L. Wylie; Linda Chui; Garrett Westmacott; Bianli Xu; Mike Drebot; Celine Nadon; J. David Knox; Gehua Wang; Keding Cheng

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has gained popularity in recent years for rapid bacterial identification, mostly at the genus or species level. In this study, a rapid method to identify the Escherichia coli flagellar antigen (H antigen) at the subspecies level was developed using a MALDI-TOF MS platform with high specificity and sensitivity. Flagella were trapped on a filter membrane, and on-filter trypsin digestion was performed. The tryptic digests of each flagellin then were collected and analyzed by MALDI-TOF MS through peptide mass fingerprinting. Sixty-one reference strains containing all 53 H types and 85 clinical strains were tested and compared to serotyping designations. Whole-genome sequencing was used to resolve conflicting results between the two methods. It was found that DHB (2,5-dihydroxybenzoic acid) worked better than CHCA (α-cyano-4-hydroxycinnamic acid) as the matrix for MALDI-TOF MS, with higher confidence during protein identification. After method optimization, reference strains representing all 53 E. coli H types were identified correctly by MALDI-TOF MS. A custom E. coli flagellar/H antigen database was crucial for clearly identifying the E. coli H antigens. Of 85 clinical isolates tested by MALDI-TOF MS-H, 75 identified MS-H types (88.2%) matched results obtained from traditional serotyping. Among 10 isolates where the results of MALDI-TOF MS-H and serotyping did not agree, 60% of H types characterized by whole-genome sequencing agreed with those identified by MALDI-TOF MS-H, compared to only 20% by serotyping. This MALDI-TOF MS-H platform can be used for rapid and cost-effective E. coli H antigen identification, especially during E. coli outbreaks.


PLOS ONE | 2011

Molecular Interaction of TPPP with PrP Antagonized the CytoPrP-Induced Disruption of Microtubule Structures and Cytotoxicity

Rui-Min Zhou; Yuan-Yuan Jing; Yan Guo; Chen Gao; Bao-Yun Zhang; Cao Chen; Qi Shi; Chan Tian; Zhao-Yun Wang; Han-Shi Gong; Jun Han; Bianli Xu; Xiao-Ping Dong

Background Tubulin polymerization promoting protein/p25 (TPPP/p25), known as a microtubule-associated protein (MAP), is a brain-specific unstructured protein with a physiological function of stabilizing cellular microtubular ultrastructures. Whether TPPP involves in the normal functions of PrP or the pathogenesis of prion disease remains unknown. Here, we proposed the data that TPPP formed molecular complex with PrP. We also investigated its influence on the aggregation of PrP and fibrillization of PrP106–126 in vitro, its antagonization against the disruption of microtubule structures and cytotoxicity of cytosolic PrP in cells, and its alternation in the brains of scrapie-infected experimental hamsters. Methodology/Principal Findings Using pull-down and immunoprecipitation assays, distinct molecular interaction between TPPP and PrP were identified and the segment of TPPP spanning residues 100–219 and the segment of PrP spanning residues 106–126 were mapped as the regions responsible for protein interaction. Sedimentation experiments found that TPPP increased the aggregation of full-length recombinant PrP (PrP23–231) in vitro. Transmission electron microscopy and Thioflavin T (ThT) assays showed that TPPP enhanced fibril formation of synthetic peptide PrP106–126 in vitro. Expression of TPPP in the cultured cells did not obviously change the microtubule networks observed by a tubulin-specific immunofluorescent assay and cell growth features measured by CCK8 tests, but significantly antagonized the disruption of microtubule structures and rescued the cytotoxicity caused by the accumulation of cytosolic PrP (CytoPrP). Furthermore, Western blots identified that the levels of the endogenous TPPP in the brains of scrapie-infected experimental hamsters were significantly reduced. Conclusion/Significance Those data highlight TPPP may work as a protective factor for cells against the damage effects of the accumulation of abnormal forms of PrPs, besides its function as an agent for dynamic stabilization of microtubular ultrastructures.


PLOS ONE | 2012

Simultaneous detection and identification of enteric viruses by PCR-mass assay.

Jingzi Piao; Jun Jiang; Bianli Xu; Xiaohong Wang; Yanfang Guan; Weili Wu; Licheng Liu; Yuan Zhang; Xueyong Huang; Pengzhi Wang; Jinyin Zhao; Xiaoping Kang; Hua Jiang; Yuanyin Cao; Yuling Zheng; Yongqiang Jiang; Yan Li; Yinhui Yang; Weijun Chen

Simultaneous detection of enteric viruses that cause similar symptoms (e.g. hand, foot and mouth disease) is essential to the prevention of outbreaks and control of infections. In this study, a novel PCR-Mass assay combining multiplex polymerase chain reaction (PCR) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was developed and used for simultaneous detection of eight distinct human enteric viruses. Enteric viral isolates and standard viral RNAs were examined to determine the sensitivity and specificity of the PCR-Mass assay. Clinical performance was evaluated with a total of 101 clinical specimens from patients suspected of having hand, foot and mouth disease (HFMD). The results were compared to those of previous analyses using real-time RT-PCR. The identification of specific viruses and clinical specimens shows that the PCR-Mass assay performed as well as or better than standard methods with respect to indicating the presence of multiplex pathogens in a single specimen.


Journal of Virological Methods | 2014

Detection of avian influenza A/H7N9/2013 virus by real-time reverse transcription-polymerase chain reaction.

Xiaoping Kang; Weili Wu; Chuntao Zhang; Licheng Liu; Huahua Feng; Lizhi Xu; Xin Zheng; Honglei Yang; Yongqiang Jiang; Bianli Xu; Jin Xu; Yinhui Yang; Weijun Chen

The first case of avian influenza A/H7N9 infection was reported in Shanghai in mid-February, 2013; by May 1, 2013, it had infected 127 people and caused 26 deaths in 10 provinces in China. Therefore, it is important to obtain reliable epidemiological data on the spread of this new infectious agent, a need that may be best met by the development of novel molecular methods. Here, a new method was described for the detection of avian influenza A/H7N9 using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Using serial dilutions of avian influenza A H7N9 cultures, the detection limit of the assay was determined to be approximately 3.2×10(-4) HAUs (hemagglutination units) for the H7 gene and 6.4×10(-4) HAUs for N9 gene. In tests of serial dilutions of in vitro-transcribed avian influenza A H7 and N9 gene RNA, positive results were obtained for target RNA containing at least three copies of the H7 gene and six copies of the N9 gene. Thirteen throat swabs from H7N9 patients were tested; all tested positive in the assay. Specificity was evaluated by testing 18 other subtypes of influenza viruses; all tested negative. A total of 180 throat swabs from patients infected with influenza virus, including 60 from patients infected with seasonal influenza A/H1N1 virus, 60 from patients infected with pandemic influenza A/H1N1/2009 virus, 30 from patients infected with seasonal influenza A/H3N2 virus and 30 from patients infected with influenza B virus, were also tested; all tested negative.

Collaboration


Dive into the Bianli Xu's collaboration.

Top Co-Authors

Avatar

Xueyong Huang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Haomin Chen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Licheng Liu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Weijun Chen

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Haifeng Wang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yanhua Du

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kai Kang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Weili Wu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Hong Ma

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Shengli Xia

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge