Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bibo Zhu is active.

Publication


Featured researches published by Bibo Zhu.


Viruses | 2015

Usutu Virus: An Emerging Flavivirus in Europe

Usama Ashraf; Jing Ye; Xindi Ruan; Shengfeng Wan; Bibo Zhu; Shengbo Cao

Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.


Vaccine | 2013

Immune evasion strategies of flaviviruses

Jing Ye; Bibo Zhu; Zhen F. Fu; Huanchun Chen; Shengbo Cao

Flavivirus is a genus of the family Flaviviridae. It includes West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and several other viruses which lead to extensive morbidity and mortality in humans. To establish infection and replication in the hosts, flaviviruses have evolved a variety of strategies to modulate the hosts immune responses. In this review, the strategies employed by flaviviruses to evade the innate and adaptive immunity of host are summarized based on current studies, with a major focus on the inhibition of interferon, complement, natural killer (NK) cell, B cell, and T cell responses. This review aims to provide an overview of the current understanding for the mechanisms used by flaviviruses to escape the hosts immune response, which will facilitate the future studies on flavivirus pathogenesis and the development of anti-flavivirus therapeutics.


Journal of Immunology | 2015

MicroRNA-15b Modulates Japanese Encephalitis Virus–Mediated Inflammation via Targeting RNF125

Bibo Zhu; Jing Ye; Yanru Nie; Usama Ashraf; Ali Zohaib; Xiaodong Duan; Zhen F. Fu; Yunfeng Song; Huanchun Chen; Shengbo Cao

Japanese encephalitis virus (JEV) can target CNS and cause neuroinflammation that is characterized by profound neuronal damage and concomitant microgliosis/astrogliosis. Although microRNAs (miRNAs) have emerged as a major regulatory network with profound effects on inflammatory response, it is less clear how they regulate JEV-induced inflammation. In this study, we found that miR-15b is involved in modulating the JEV-induced inflammatory response. The data demonstrate that miR-15b is upregulated during JEV infection of glial cells and mouse brains. In vitro overexpression of miR-15b enhances the JEV-induced inflammatory response, whereas inhibition of miR-15b decreases it. Mechanistically, ring finger protein 125 (RNF125), a negative regulator of RIG-I signaling, is identified as a direct target of miR-15b in the context of JEV infection. Furthermore, inhibition of RNF125 by miR-15b results in an elevation in RIG-I levels, which, in turn, leads to a higher production of proinflammatory cytokines and type I IFN. In vivo knockdown of virus-induced miR-15b by antagomir-15b restores the expression of RNF125, reduces the production of inflammatory cytokines, attenuates glial activation and neuronal damage, decreases viral burden in the brain, and improves survival in the mouse model. Taken together, our results indicate that miR-15b modulates the inflammatory response during JEV infection by negative regulation of RNF125 expression. Therefore, miR-15b targeting may constitute an interesting and promising approach to control viral-induced neuroinflammation.


Journal of Virology | 2016

MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11

Usama Ashraf; Bibo Zhu; Jing Ye; Shengfeng Wan; Yanru Nie; Zheng Chen; Min Cui; Chong Wang; Xiaodong Duan; Hao Zhang; Huanchun Chen; Shengbo Cao

ABSTRACT Japanese encephalitis virus (JEV) can invade the central nervous system and consequently induce neuroinflammation, which is characterized by profound neuronal cell damage accompanied by astrogliosis and microgliosis. Albeit microRNAs (miRNAs) have emerged as major regulatory noncoding RNAs with profound effects on inflammatory response, it is unknown how astrocytic miRNAs regulate JEV-induced inflammation. Here, we found the involvement of miR-19b-3p in regulating the JEV-induced inflammatory response in vitro and in vivo. The data demonstrated that miR-19b-3p is upregulated in cultured cells and mouse brain tissues during JEV infection. Overexpression of miR-19b-3p led to increased production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5, after JEV infection, whereas knockdown of miR-19b-3p had completely opposite effects. Mechanistically, miR-19b-3p modulated the JEV-induced inflammatory response via targeting ring finger protein 11, a negative regulator of nuclear factor kappa B signaling. We also found that inhibition of ring finger protein 11 by miR-19b-3p resulted in accumulation of nuclear factor kappa B in the nucleus, which in turn led to higher production of inflammatory cytokines. In vivo silencing of miR-19b-3p by a specific antagomir reinvigorates the expression level of RNF11, which in turn reduces the production of inflammatory cytokines, abrogates gliosis and neuronal cell death, and eventually improves the survival rate in the mouse model. Collectively, our results demonstrate that miR-19b-3p positively regulates the JEV-induced inflammatory response. Thus, miR-19b-3p targeting may constitute a thought-provoking approach to rein in JEV-induced inflammation. IMPORTANCE Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in humans worldwide. The pathological features of JEV-induced encephalitis are inflammatory reactions and neurological diseases resulting from glia activation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. Accumulating data indicate that miRNAs regulate a variety of cellular processes, including the host inflammatory response under pathological conditions. Recently, a few studies demonstrated the role of miRNAs in a JEV-induced inflammatory response in microglia; however, their role in an astrocyte-derived inflammatory response is largely unknown. The present study reveals that miR-19b-3p targets ring finger protein 11 in glia and promotes inflammatory cytokine production by enhancing nuclear factor kappa B activity in these cells. Moreover, administration of an miR-19b-3p-specific antagomir in JEV-infected mice reduces neuroinflammation and lethality. These findings suggest a new insight into the molecular mechanism of the JEV-induced inflammatory response and provide a possible therapeutic entry point for treating viral encephalitis.


The Journal of Infectious Diseases | 2014

Etanercept Reduces Neuroinflammation and Lethality in Mouse Model of Japanese Encephalitis

Jing Ye; Rong Jiang; Min Cui; Bibo Zhu; Leqiang Sun; Yueyun Wang; Ali Zohaib; Qian Dong; Xindi Ruan; Yunfeng Song; Wen He; Huanchun Chen; Shengbo Cao

BACKGROUND Japanese encephalitis virus (JEV) is a neurotropic flavivirus that causes Japanese encephalitis (JE), which leads to high fatality rates in human. Tumor necrosis factor alpha (TNF-α) is a key factor that mediates immunopathology in the central nervous system (CNS) during JE. Etanercept is a safe anti-TNF-α drug that has been commonly used in the treatment of various human autoimmune diseases. METHODS The effect of etanercept on JE was investigated with a JEV-infected mouse model. Four groups of mice were assigned to receive injections of phosphate-buffered saline, etanercept, JEV, or JEV plus etanercept. Inflammatory responses in mouse brains and mortality of mice were evaluated within 23 days post infection. RESULTS The in vitro assay with mouse neuron/glia cultures showed that etanercept treatment reduced the inflammatory response induced by JEV infection. In vivo experiments further demonstrated that administration of etanercept protected mice from JEV-induced lethality. Neuronal damage, glial activation, and secretion of proinflammatory cytokines were found to be markedly decreased in JEV-infected mice that received etanercept treatment. Additionally, etanercept treatment restored the integrity of the blood-brain barrier and reduced viral load in mouse brains. CONCLUSIONS Etanercept effectively reduces the inflammation and provides protection against acute encephalitis in a JEV-infected mouse model.


Clinical & Developmental Immunology | 2014

Roles of TLR3 and RIG-I in Mediating the Inflammatory Response in Mouse Microglia following Japanese Encephalitis Virus Infection

Rong Jiang; Jing Ye; Bibo Zhu; Yunfeng Song; Huanchun Chen; Shengbo Cao

Japanese encephalitis virus (JEV) infection can cause central nervous system disease with irreversible neurological damage in humans and animals. Evidence suggests that overactivation of microglia leads to greatly increased neuronal damage during JEV infection. However, the mechanism by which JEV induces the activation of microglia remains unclear. Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I) can recognize double-stranded RNA, and their downstream signaling results in production of proinflammatory mediators. In this study, we investigated the roles of TLR3 and RIG-I in the inflammatory response caused by JEV infection in the mouse microglial cell line. JEV infection induced the expression of TLR3 and RIG-I and the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK). Knockdown of TLR3 and RIG-I attenuated activation of ERK, p38MAPK, activator protein 1 (AP-1), and nuclear factor κB (NF-κB). Secretion of TNF-α, IL-6, and CCL-2, which was induced by JEV, was reduced by TLR3 and RIG-I knockdown and inhibitors of phosphorylated ERK and p38MAPK. Furthermore, viral proliferation was increased following knockdown of TLR3 and RIG-I. Our findings suggest that the signaling pathways of TLR3 and RIG-I play important roles in the JEV-induced inflammatory response of microglia.


Virology Journal | 2012

Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

Bibo Zhu; Jing Ye; Ping Lu; Rong Jiang; Xiaohong Yang; Zhen F Fu; Huanchun Chen; Shengbo Cao

BackgroundWest Nile Virus (WNV) is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells.ResultsIn the present study, recombinant baculoviruses expressing WNV premembrane (prM) and envelope (E) proteins under the cytomegalovirus (CMV) promoter with or without vesicular stomatitis virus glycoprotein (VSV/G) were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse) induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ) in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6.ConclusionsThese recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.


Journal of Proteome Research | 2015

Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.

Hao Zhang; Jun Sun; Jing Ye; Usama Ashraf; Zheng Chen; Bibo Zhu; Wen He; Qiuping Xu; Yanming Wei; Huanchun Chen; Zhen F. Fu; Rong Liu; Shengbo Cao

West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.


Scientific Reports | 2016

Transcriptional regulation of miR-15b by c-Rel and CREB in Japanese encephalitis virus infection

Bibo Zhu; Jing Ye; Usama Ashraf; Yunchuan Li; Huanchun Chen; Yunfeng Song; Shengbo Cao

MicroRNAs (miRNAs) have been well known to play diverse roles in viral infection at the level of posttranscriptional repression. However, much less is understood about the mechanism by which miRNAs are regulated during viral infection. It is likely that both host and virus contain factors to modulate miRNA expression. Here we report the up-regulation of microRNA-15b (miR-15b) in vitro upon infection with Japanese encephalitis virus (JEV). Analysis of miR-15b precursor, pri-miR-15b and pre-miR-15b, suggest that the regulation occurs transcriptionally. Further, we identified the transcriptional regulatory region of miR-15b that contains consensus binding motif for NF-κB subunit c-Rel and cAMP-response element binding protein (CREB), which are known as transcription factor to regulate gene expression. By promoter fusion and mutational analyses, we demonstrated that c-Rel and CREB bind directly to the promoter elements of miR-15b, which are responsible for miR-15b transcription in response to JEV infection. Finally, we showed that pharmacological inhibition of ERK and NF-κB signaling pathway blocked induction of miR-15b in JEV infection, suggesting important roles of ERK and NF-κB pathway in the regulation of miR-15b gene. Therefore, our observations indicate that induced expression of miR-15b is modulated by c-Rel and CREB in response to JEV infection.


Oncotarget | 2016

MicroRNA-22 negatively regulates poly(I:C)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS)

Shengfeng Wan; Usama Ashraf; Jing Ye; Xiaodong Duan; Ali Zohaib; Wentao Wang; Zheng Chen; Bibo Zhu; Yunchuan Li; Huanchun Chen; Shengbo Cao

MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in regulating the host immune response. Here we found that miR-22 is induced in glial cells upon stimulation with poly(I:C). Overexpression of miR-22 in the cultured cells resulted in decreased activity of interferon regulatory factor-3 and nuclear factor-kappa B, which in turn led to reduced expression of interferon-β and inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and chemokine (C-C motif) ligand 5, upon stimulation with poly(I:C), whereas knockdown of miR-22 had the opposite effect. We used a combination of bioinformatics and experimental techniques to demonstrate that mitochondrial antiviral signaling protein (MAVS), which positively regulates type I interferon production, is a novel target of miR-22. Overexpression of miR-22 decreased the activity of a luciferase reporter containing the MAVS 3′-untranslated region and led to decreased MAVS mRNA and protein levels. In contrast, ectopic expression of miR-22 inhibitor led to elevated MAVS expression. Collectively, our results demonstrate that miR-22 negatively regulates poly(I:C)-induced production of type I interferon and inflammatory cytokines via targeting MAVS.

Collaboration


Dive into the Bibo Zhu's collaboration.

Top Co-Authors

Avatar

Jing Ye

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengbo Cao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huanchun Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Usama Ashraf

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ali Zohaib

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengfeng Wan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Duan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunfeng Song

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zheng Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hao Zhang

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge