Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shengbo Cao is active.

Publication


Featured researches published by Shengbo Cao.


Viruses | 2015

Usutu Virus: An Emerging Flavivirus in Europe

Usama Ashraf; Jing Ye; Xindi Ruan; Shengfeng Wan; Bibo Zhu; Shengbo Cao

Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.


Vaccine | 2013

Immune evasion strategies of flaviviruses

Jing Ye; Bibo Zhu; Zhen F. Fu; Huanchun Chen; Shengbo Cao

Flavivirus is a genus of the family Flaviviridae. It includes West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and several other viruses which lead to extensive morbidity and mortality in humans. To establish infection and replication in the hosts, flaviviruses have evolved a variety of strategies to modulate the hosts immune responses. In this review, the strategies employed by flaviviruses to evade the innate and adaptive immunity of host are summarized based on current studies, with a major focus on the inhibition of interferon, complement, natural killer (NK) cell, B cell, and T cell responses. This review aims to provide an overview of the current understanding for the mechanisms used by flaviviruses to escape the hosts immune response, which will facilitate the future studies on flavivirus pathogenesis and the development of anti-flavivirus therapeutics.


Journal of Virology | 2015

Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection

Fang Li; Yueyun Wang; Lan Yu; Shengbo Cao; Ke Wang; Jiaolong Yuan; Chong Wang; Kunlun Wang; Min Cui; Zhen F. Fu

ABSTRACT Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. IMPORTANCE Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infection per se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.


Virology Journal | 2011

Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain

Yang Yang; Jing Ye; Xiaohong Yang; Rong Jiang; Huanchun Chen; Shengbo Cao

BackgroundJapanese encephalitis virus (JEV) is a mosquito-borne flavivirus, leading to an acute encephalitis and damage to the central nervous system (CNS). The mechanism of JEV pathogenesis is still unclear. DNA microarray analyses have been recently employed to detect changes in host gene expression, which is helpful to reveal molecular pathways that govern viral pathogenesis. In order to globally identify candidate host genes associated with JEV pathogenesis, a systematic mRNA profiling was performed in spleens and brains of JEV-infected mice.ResultsThe results of microarray analysis showed that 437 genes in spleen and 1119 genes in brain were differentially expressed in response to JEV infection, with obviously upregulated genes like pro-inflammatory chemokines and cytokines, apoptosis-related proteases and IFN inducible transcription factors. And the significant pathways of differentially expressed genes are involved in cytokine-cytokine receptor interaction, natural killer cell mediated cytotoxicity, antigen processing and presentation, MAPK signaling, and toll-like receptor signaling, etc. The differential expression of these genes suggests a strong antiviral response of host but may also contribute to the pathogenesis of JEV resulting in encephalitis. Quantitative RT-PCR (RT-qPCR) assay of some selected genes further confirmed the results of microarray assay.ConclusionsData obtained from mRNA microarray suggests that JEV infection causes significant changes of mRNA expression profiles in mouse spleen and brain. Most of differentially expression genes are associated with antiviral response of host, which may provide important information for investigation of JEV pathogenesis and therapeutic method.


Journal of Immunology | 2015

MicroRNA-15b Modulates Japanese Encephalitis Virus–Mediated Inflammation via Targeting RNF125

Bibo Zhu; Jing Ye; Yanru Nie; Usama Ashraf; Ali Zohaib; Xiaodong Duan; Zhen F. Fu; Yunfeng Song; Huanchun Chen; Shengbo Cao

Japanese encephalitis virus (JEV) can target CNS and cause neuroinflammation that is characterized by profound neuronal damage and concomitant microgliosis/astrogliosis. Although microRNAs (miRNAs) have emerged as a major regulatory network with profound effects on inflammatory response, it is less clear how they regulate JEV-induced inflammation. In this study, we found that miR-15b is involved in modulating the JEV-induced inflammatory response. The data demonstrate that miR-15b is upregulated during JEV infection of glial cells and mouse brains. In vitro overexpression of miR-15b enhances the JEV-induced inflammatory response, whereas inhibition of miR-15b decreases it. Mechanistically, ring finger protein 125 (RNF125), a negative regulator of RIG-I signaling, is identified as a direct target of miR-15b in the context of JEV infection. Furthermore, inhibition of RNF125 by miR-15b results in an elevation in RIG-I levels, which, in turn, leads to a higher production of proinflammatory cytokines and type I IFN. In vivo knockdown of virus-induced miR-15b by antagomir-15b restores the expression of RNF125, reduces the production of inflammatory cytokines, attenuates glial activation and neuronal damage, decreases viral burden in the brain, and improves survival in the mouse model. Taken together, our results indicate that miR-15b modulates the inflammatory response during JEV infection by negative regulation of RNF125 expression. Therefore, miR-15b targeting may constitute an interesting and promising approach to control viral-induced neuroinflammation.


Veterinary Research Communications | 2005

Detection of porcine circovirus type 2, porcine parvovirus and porcine pseudorabies virus from pigs with postweaning multisystemic wasting syndrome by multiplex PCR

Shengbo Cao; Huanchun Chen; J. Zhao; J. Lü; Shaobo Xiao; Meilin Jin; Aizhen Guo; Bin Wu; Qigai He

Multiplex PCR was established to detect porcine circovirus type 2 (PCV-2), porcine parvovirus (PPV) and porcine pseudorabies virus (PRV) and applied to samples from 137 piglets exhibiting clinical signs of postweaning multisystemic wasting syndrome (PMWS). PCV-2 DNA was detected from all samples. Moreover, 43 samples were positive for PPV but negative for PRV; 11 samples were positive for PRV but negative for PPV; and 35 samples were positive both for PPV and PRV. These results suggests that PCV-2 co-infection with PRV and PPV may play an important role in PMWS. Also, multiplex PCR is an appropriate candidate method for diagnosis of PCV-2, PRV and PPV simultaneously in field cases.


Journal of Virology | 2016

MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11

Usama Ashraf; Bibo Zhu; Jing Ye; Shengfeng Wan; Yanru Nie; Zheng Chen; Min Cui; Chong Wang; Xiaodong Duan; Hao Zhang; Huanchun Chen; Shengbo Cao

ABSTRACT Japanese encephalitis virus (JEV) can invade the central nervous system and consequently induce neuroinflammation, which is characterized by profound neuronal cell damage accompanied by astrogliosis and microgliosis. Albeit microRNAs (miRNAs) have emerged as major regulatory noncoding RNAs with profound effects on inflammatory response, it is unknown how astrocytic miRNAs regulate JEV-induced inflammation. Here, we found the involvement of miR-19b-3p in regulating the JEV-induced inflammatory response in vitro and in vivo. The data demonstrated that miR-19b-3p is upregulated in cultured cells and mouse brain tissues during JEV infection. Overexpression of miR-19b-3p led to increased production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5, after JEV infection, whereas knockdown of miR-19b-3p had completely opposite effects. Mechanistically, miR-19b-3p modulated the JEV-induced inflammatory response via targeting ring finger protein 11, a negative regulator of nuclear factor kappa B signaling. We also found that inhibition of ring finger protein 11 by miR-19b-3p resulted in accumulation of nuclear factor kappa B in the nucleus, which in turn led to higher production of inflammatory cytokines. In vivo silencing of miR-19b-3p by a specific antagomir reinvigorates the expression level of RNF11, which in turn reduces the production of inflammatory cytokines, abrogates gliosis and neuronal cell death, and eventually improves the survival rate in the mouse model. Collectively, our results demonstrate that miR-19b-3p positively regulates the JEV-induced inflammatory response. Thus, miR-19b-3p targeting may constitute a thought-provoking approach to rein in JEV-induced inflammation. IMPORTANCE Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in humans worldwide. The pathological features of JEV-induced encephalitis are inflammatory reactions and neurological diseases resulting from glia activation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. Accumulating data indicate that miRNAs regulate a variety of cellular processes, including the host inflammatory response under pathological conditions. Recently, a few studies demonstrated the role of miRNAs in a JEV-induced inflammatory response in microglia; however, their role in an astrocyte-derived inflammatory response is largely unknown. The present study reveals that miR-19b-3p targets ring finger protein 11 in glia and promotes inflammatory cytokine production by enhancing nuclear factor kappa B activity in these cells. Moreover, administration of an miR-19b-3p-specific antagomir in JEV-infected mice reduces neuroinflammation and lethality. These findings suggest a new insight into the molecular mechanism of the JEV-induced inflammatory response and provide a possible therapeutic entry point for treating viral encephalitis.


The Journal of Infectious Diseases | 2014

Etanercept Reduces Neuroinflammation and Lethality in Mouse Model of Japanese Encephalitis

Jing Ye; Rong Jiang; Min Cui; Bibo Zhu; Leqiang Sun; Yueyun Wang; Ali Zohaib; Qian Dong; Xindi Ruan; Yunfeng Song; Wen He; Huanchun Chen; Shengbo Cao

BACKGROUNDnJapanese encephalitis virus (JEV) is a neurotropic flavivirus that causes Japanese encephalitis (JE), which leads to high fatality rates in human. Tumor necrosis factor alpha (TNF-α) is a key factor that mediates immunopathology in the central nervous system (CNS) during JE. Etanercept is a safe anti-TNF-α drug that has been commonly used in the treatment of various human autoimmune diseases.nnnMETHODSnThe effect of etanercept on JE was investigated with a JEV-infected mouse model. Four groups of mice were assigned to receive injections of phosphate-buffered saline, etanercept, JEV, or JEV plus etanercept. Inflammatory responses in mouse brains and mortality of mice were evaluated within 23 days post infection.nnnRESULTSnThe in vitro assay with mouse neuron/glia cultures showed that etanercept treatment reduced the inflammatory response induced by JEV infection. In vivo experiments further demonstrated that administration of etanercept protected mice from JEV-induced lethality. Neuronal damage, glial activation, and secretion of proinflammatory cytokines were found to be markedly decreased in JEV-infected mice that received etanercept treatment. Additionally, etanercept treatment restored the integrity of the blood-brain barrier and reduced viral load in mouse brains.nnnCONCLUSIONSnEtanercept effectively reduces the inflammation and provides protection against acute encephalitis in a JEV-infected mouse model.


Clinical & Developmental Immunology | 2014

Roles of TLR3 and RIG-I in Mediating the Inflammatory Response in Mouse Microglia following Japanese Encephalitis Virus Infection

Rong Jiang; Jing Ye; Bibo Zhu; Yunfeng Song; Huanchun Chen; Shengbo Cao

Japanese encephalitis virus (JEV) infection can cause central nervous system disease with irreversible neurological damage in humans and animals. Evidence suggests that overactivation of microglia leads to greatly increased neuronal damage during JEV infection. However, the mechanism by which JEV induces the activation of microglia remains unclear. Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I) can recognize double-stranded RNA, and their downstream signaling results in production of proinflammatory mediators. In this study, we investigated the roles of TLR3 and RIG-I in the inflammatory response caused by JEV infection in the mouse microglial cell line. JEV infection induced the expression of TLR3 and RIG-I and the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK). Knockdown of TLR3 and RIG-I attenuated activation of ERK, p38MAPK, activator protein 1 (AP-1), and nuclear factor κB (NF-κB). Secretion of TNF-α, IL-6, and CCL-2, which was induced by JEV, was reduced by TLR3 and RIG-I knockdown and inhibitors of phosphorylated ERK and p38MAPK. Furthermore, viral proliferation was increased following knockdown of TLR3 and RIG-I. Our findings suggest that the signaling pathways of TLR3 and RIG-I play important roles in the JEV-induced inflammatory response of microglia.


Biosensors and Bioelectronics | 2011

Facile fabrication of magnetic gold electrode for magnetic beads-based electrochemical immunoassay: Application to the diagnosis of Japanese encephalitis virus

Fang Li; Li Mei; Yaoming Li; Kaihong Zhao; Huanchun Chen; Peng Wu; Yonggang Hu; Shengbo Cao

A novel magnetic beads-based electrochemical immunoassay strategy has been developed for the detection of Japanese encephalitis virus (JEV). The magnetic gold electrode was fabricated to manipulate magnetic beads for the direct sensing applications. Gold-coated magnetic beads were employed as the platforms for the immobilization and immunoreaction process, and horseradish peroxidase was chosen as an enzymatic tracer. The proteins (e.g., antibodies or immunocomplexes) attached on the surface of magnetic beads were found to induce a significant decline in their electric conductivity. Multiwalled carbon nanotubes were introduced to improve sensitivity of the assay. The envelope (E) protein, a major immunogenic protein of JEV, was utilized to optimize the assay parameters. Under the optimal conditions, the linear response range of E protein was 0.84 to 11,200 ng/mL with a detection limit of 0.56 ng/mL. When applied for detection of JEV, the proposed method generated a linear response range between 2×10(3) and 5×10(5) PFU/mL. The detection limit for JEV was 2.0×10(3) PFU/mL, which was 2 orders of magnitude lower than that of immunochromatographic strip and similar to that obtained from RT-PCR. This method was also successfully applied to detect JEV in clinical specimens.

Collaboration


Dive into the Shengbo Cao's collaboration.

Top Co-Authors

Avatar

Huanchun Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Ye

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunfeng Song

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bibo Zhu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zheng Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Usama Ashraf

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ali Zohaib

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengfeng Wan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunchuan Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wen He

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge