Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bijay Jassal is active.

Publication


Featured researches published by Bijay Jassal.


Nucleic Acids Research | 2014

The Reactome pathway knowledgebase

Antonio Fabregat; Konstantinos Sidiropoulos; Phani Garapati; Marc Gillespie; Kerstin Hausmann; Robin Haw; Bijay Jassal; Steven Jupe; Florian Korninger; Sheldon J. McKay; Lisa Matthews; Bruce May; Marija Milacic; Karen Rothfels; Veronica Shamovsky; Marissa Webber; Joel Weiser; Mark A. Williams; Guanming Wu; Lincoln Stein; Henning Hermjakob; Peter D'Eustachio

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Nucleic Acids Research | 2004

Reactome: a knowledgebase of biological pathways

G. Joshi-Tope; Marc Gillespie; Imre Vastrik; Peter D'Eustachio; Esther Schmidt; B. de Bono; Bijay Jassal; G.R. Gopinath; G.R. Wu; Lisa Matthews; Suzanna E. Lewis; Ewan Birney; Lincoln Stein

Reactome, located at http://www.reactome.org is a curated, peer-reviewed resource of human biological processes. Given the genetic makeup of an organism, the complete set of possible reactions constitutes its reactome. The basic unit of the Reactome database is a reaction; reactions are then grouped into causal chains to form pathways. The Reactome data model allows us to represent many diverse processes in the human system, including the pathways of intermediary metabolism, regulatory pathways, and signal transduction, and high-level processes, such as the cell cycle. Reactome provides a qualitative framework, on which quantitative data can be superimposed. Tools have been developed to facilitate custom data entry and annotation by expert biologists, and to allow visualization and exploration of the finished dataset as an interactive process map. Although our primary curational domain is pathways from Homo sapiens, we regularly create electronic projections of human pathways onto other organisms via putative orthologs, thus making Reactome relevant to model organism research communities. The database is publicly available under open source terms, which allows both its content and its software infrastructure to be freely used and redistributed.


Nucleic Acids Research | 2011

Reactome: a database of reactions, pathways and biological processes

David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein

Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.


Nucleic Acids Research | 2009

Reactome knowledgebase of human biological pathways and processes.

Lisa Matthews; Gopal Gopinath; Marc Gillespie; Michael Caudy; David Croft; Bernard de Bono; Phani Garapati; Jill Hemish; Henning Hermjakob; Bijay Jassal; Alex Kanapin; Suzanna E. Lewis; Shahana Mahajan; Bruce May; Esther Schmidt; Imre Vastrik; Guanming Wu; Ewan Birney; Lincoln Stein; Peter D’Eustachio

Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactomes data content and software can all be freely used and redistributed under open source terms.


Database | 2010

The systematic annotation of the three main GPCR families in Reactome

Bijay Jassal; Steven Jupe; Michael Caudy; Ewan Birney; Lincoln Stein; Henning Hermjakob; Peter D’Eustachio

Reactome is an open-source, freely available database of human biological pathways and processes. A major goal of our work is to provide an integrated view of cellular signalling processes that spans from ligand–receptor interactions to molecular readouts at the level of metabolic and transcriptional events. To this end, we have built the first catalogue of all human G protein-coupled receptors (GPCRs) known to bind endogenous or natural ligands. The UniProt database has records for 797 proteins classified as GPCRs and sorted into families A/1, B/2 and C/3 on the basis of amino accid sequence. To these records we have added details from the IUPHAR database and our own manual curation of relevant literature to create reactions in which 563 GPCRs bind ligands and also interact with specific G-proteins to initiate signalling cascades. We believe the remaining 234 GPCRs are true orphans. The Reactome GPCR pathway can be viewed as a detailed interactive diagram and can be exported in many forms. It provides a template for the orthology-based inference of GPCR reactions for diverse model organism species, and can be overlaid with protein–protein interaction and gene expression datasets to facilitate overrepresentation studies and other forms of pathway analysis. Database URL: http://www.reactome.org


Bioinformatics | 2017

Reactome enhanced pathway visualization

Konstantinos Sidiropoulos; Guilherme Viteri; Cristoffer Sevilla; Steve Jupe; Marissa Webber; Marija Orlic-Milacic; Bijay Jassal; Bruce May; Veronica Shamovsky; Corina Duenas; Karen Rothfels; Lisa Matthews; Heeyeon Song; Lincoln Stein; Robin Haw; Peter D’Eustachio; Peipei Ping; Henning Hermjakob; Antonio Fabregat

Motivation Reactome is a free, open‐source, open‐data, curated and peer‐reviewed knowledge base of biomolecular pathways. Pathways are arranged in a hierarchical structure that largely corresponds to the GO biological process hierarchy, allowing the user to navigate from high level concepts like immune system to detailed pathway diagrams showing biomolecular events like membrane transport or phosphorylation. Here, we present new developments in the Reactome visualization system that facilitate navigation through the pathway hierarchy and enable efficient reuse of Reactome visualizations for users’ own research presentations and publications. Results For the higher levels of the hierarchy, Reactome now provides scalable, interactive textbook‐style diagrams in SVG format, which are also freely downloadable and editable. Repeated diagram elements like ‘mitochondrion’ or ‘receptor’ are available as a library of graphic elements. Detailed lower‐level diagrams are now downloadable in editable PPTX format as sets of interconnected objects. Availability and implementation http://reactome.org Contact [email protected] or [email protected]


Nucleic Acids Research | 2013

The EBI enzyme portal

Rafael Alcántara; Joseph Onwubiko; Hong Cao; Paula de Matos; Jennifer A. Cham; Jules Jacobsen; Gemma L. Holliday; Julia D. Fischer; Syed Asad Rahman; Bijay Jassal; Mikael Goujon; Francis Rowland; Sameer Velankar; Rodrigo Lopez; John P. Overington; Gerard J. Kleywegt; Henning Hermjakob; Claire O’Donovan; María Martín; Janet M. Thornton; Christoph Steinbeck

The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reactions, pathways and small molecules. The fact that these data reside in separate databases makes information discovery cumbersome. The main goal of the portal is to simplify this process for end users.


Database | 2014

A controlled vocabulary for pathway entities and events.

Steven Jupe; Bijay Jassal; Mark A. Williams; Guanming Wu

Entities involved in pathways and the events they participate in require descriptive and unambiguous names that are often not available in the literature or elsewhere. Reactome is a manually curated open-source resource of human pathways. It is accessible via a website, available as downloads in standard reusable formats and via Representational State Transfer (REST)-ful and Simple Object Access Protocol (SOAP) application programming interfaces (APIs). We have devised a controlled vocabulary (CV) that creates concise, unambiguous and unique names for reactions (pathway events) and all the molecular entities they involve. The CV could be reapplied in any situation where names are used for pathway entities and events. Adoption of this CV would significantly improve naming consistency and readability, with consequent benefits for searching and data mining within and between databases. Database URL: http://www.reactome.org


Glycobiology | 2011

The annotation of the Asparagine N-linked Glycosylation pathway in the Reactome Database

Giovanni Marco Dall'Olio; Bijay Jassal; Ludovica Montanucci; Pascal Gagneux; Jaume Bertranpetit; Hafid Laayouni

Asparagine N-linked glycosylation is one of the most important forms of protein post-translational modification in eukaryotes and is one of the first metabolic pathways described at a biochemical level. Here, we report a new annotation of this pathway for the Human species, published after passing a peer-review process in Reactome. The new annotation presented here offers a high level of detail and provides references and descriptions for each reaction, along with integration with GeneOntology and other databases. The open-source approach of Reactome toward annotation encourages feedback from its users, making it easier to keep the annotation of this pathway updated with future knowledge. Reactomes web interface allows easy navigation between steps involved in the pathway to compare it with other pathways and resources in other scientific databases and to export it to BioPax and SBML formats, making it accessible for computational studies. This new entry in Reactome expands and complements the annotations already published in databases for biological pathways and provides a common reference to researchers interested in studying this important pathway in the human species. Finally, we discuss the status of the annotation of this pathway and point out which steps are worth further investigation or need better experimental validation.


Genome Biology | 2009

Correction: Reactome: a knowledge base of biologic pathways and processes

Imre Vastrik; Peter D'Eustachio; Esther Schmidt; Gopal Gopinath; David Croft; Bernard de Bono; Marc Gillespie; Bijay Jassal; Suzanna E. Lewis; Lisa Matthews; Guanming Wu; Ewan Birney; Lincoln Stein

Reactome http://www.reactome.org, an online curated resource for human pathway data, provides infrastructure for computation across the biologic reaction network. We use Reactome to infer equivalent reactions in multiple nonhuman species, and present data on the reliability of these inferred reactions for the distantly related eukaryote Saccharomyces cerevisiae. Finally, we describe the use of Reactome both as a learning resource and as a computational tool to aid in the interpretation of microarrays and similar large-scale datasets.

Collaboration


Dive into the Bijay Jassal's collaboration.

Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guanming Wu

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Schmidt

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Croft

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Imre Vastrik

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Gopal Gopinath

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge