David Croft
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Croft.
Nucleic Acids Research | 2011
David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein
Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.
Nucleic Acids Research | 2009
Lisa Matthews; Gopal Gopinath; Marc Gillespie; Michael Caudy; David Croft; Bernard de Bono; Phani Garapati; Jill Hemish; Henning Hermjakob; Bijay Jassal; Alex Kanapin; Suzanna E. Lewis; Shahana Mahajan; Bruce May; Esther Schmidt; Imre Vastrik; Guanming Wu; Ewan Birney; Lincoln Stein; Peter D’Eustachio
Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactomes data content and software can all be freely used and redistributed under open source terms.
Cancers | 2012
Marija Milacic; Robin Haw; Karen Rothfels; Guanming Wu; David Croft; Henning Hermjakob; Peter D'Eustachio; Lincoln Stein
Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.
Database | 2011
Jonathan M. Guberman; J. Ai; Olivier Arnaiz; Joachim Baran; Andrew Blake; Richard Baldock; Claude Chelala; David Croft; Anthony Cros; Rosalind J. Cutts; A. Di Génova; Simon A. Forbes; T. Fujisawa; Emanuela Gadaleta; David Goodstein; Gunes Gundem; Bernard Haggarty; Syed Haider; Matthew Hall; Todd W. Harris; Robin Haw; Songnian Hu; Simon J. Hubbard; Jack Hsu; Vivek Iyer; Philip Jones; Toshiaki Katayama; Rhoda Kinsella; Lei Kong; Daniel Lawson
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities. Database URL: http://central.biomart.org.
Nucleic Acids Research | 2014
Marcela K. Monaco; Joshua C. Stein; Sushma Naithani; Sharon Wei; Palitha Dharmawardhana; Sunita Kumari; Vindhya Amarasinghe; Ken Youens-Clark; James Thomason; Justin Preece; Shiran Pasternak; Andrew Olson; Yinping Jiao; Zhenyuan Lu; Daniel M. Bolser; Arnaud Kerhornou; Daniel M. Staines; Brandon Walts; Guanming Wu; Peter D'Eustachio; Robin Haw; David Croft; Paul J. Kersey; Lincoln Stein; Pankaj Jaiswal; Doreen Ware
Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.
Methods of Molecular Biology | 2013
David Croft
The first steps of building a new model can be very time-consuming, involving consulting many research papers and then assembling a plausible network of reactions. In this chapter, tools for speeding up this process will be discussed. Reactome is a database containing extensive coverage of pathways in Homo sapiens and numerous reference species. It offers researchers wishing to create new models from scratch various tools for extracting the relevant reactions, complete with layout information. In this chapter, two use cases will be described, in which a modeller provides certain essential pieces of information and Reactome automatically constructs the basic models and then dumps them in SBML-ML format.
Database | 2011
Robin Haw; David Croft; Christina K. Yung; Nelson Ndegwa; Peter D'Eustachio; Henning Hermjakob; Lincoln Stein
Reactome is an open source, expert-authored, manually curated and peer-reviewed database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Reactome BioMart provides biologists and bioinformaticians with a single web interface for performing simple or elaborate queries of the Reactome database, aggregating data from different sources and providing an opportunity to integrate experimental and computational results with information relating to biological pathways. Database URL: http://www.reactome.org
Journal of Biomolecular NMR | 1997
David Croft; Johan Kemmink; Klaus-Peter Neidig; Hartmut Oschkinat
One of the major bottlenecks in the determination of proteinstructures by NMR is in the evaluation of the data produced by theexperiments. An important step in this process is assignment, where thepeaks in the spectra are assigned to specific spins within specificresidues. In this paper, we discuss a spin system assignment tool based onpattern recognition techniques. This tool employs user-specified ’templates‘to search for patterns of peaks in the original spectra; these patterns maycorrespond to side-chain or backbone fragments. Multiple spectra willnormally be searched simultaneously to reduce the impact of noise. Thesearch generates a preliminary list of putative assignments, which arefiltered by a set of heuristic algorithms to produce the final results list.Each result contains a set of chemical shift values plus information aboutthe peaks found. The results may be used as input for combinatorialroutines, such as sequential assignment procedures, in place of peak lists.Two examples are presented, in which (i) HCCH-COSY and -TOCSY spectra arescanned for side-chain spin systems; and (ii) backbone spin systems aredetected in a set of spectra comprising HNCA, HN(CO)CA, HNCO, HN(CA)CO,CBCANH and CBCA(CO)NH.
Methods in Enzymology | 1994
Hartmut Oschkinat; David Croft
Publisher Summary Attempts at automated assignment of proteins using 3D and 4D NMR spectra are discussed. As with conventional assignment, based on 2D data, spectra containing both through-bond and through-space information may be used. The field of automated assignment is still a young one, and it remains dominated by fairly literal attempts to automate existing manual sequential assignment methods. There is a trend toward the incorporation of the structure determination into the assignment process, which is certain to increase with increasing computer power. Ultimately, ones may expect to see a complete integration of assignment and structure calculation. Three-dimensional spectra, with their clear advantages in terms of peak separation, are becoming increasingly the norm as starting data for automated assignment.
Database | 2011
Nelson Ndegwa; Richard G. Côté; David Ovelleiro; Peter D'Eustachio; Henning Hermjakob; Juan Antonio Vizcaíno; David Croft
The reversible phosphorylation of serine, threonine and tyrosine hydroxyl groups is an especially prominent form of post-translational modification (PTM) of proteins. It plays critical roles in the regulation of diverse processes, and mutations that directly or indirectly affect these phosphorylation events have been associated with many cancers and other pathologies. Here, we describe the development of a new BioMart tool that gathers data from three different biological resources to provide the user with an integrated view of phosphorylation events associated with a human protein of interest, the complexes of which the protein (modified or not) is a part, the reactions in which the protein and its complexes participate and the somatic mutations that might be expected to perturb those functions. The three resources used are the Reactome, PRIDE and COSMIC databases. The Reactome knowledgebase contains annotations of phosphorylated human proteins linked to the reactions in which they are phosphorylated and dephosphorylated, to the complexes of which they are parts and to the reactions in which the phosphorylated proteins participate as substrates, catalysts and regulators. The PRIDE database holds extensive mass spectrometry data from which protein phosphorylation patterns can be inferred, and the COSMIC database holds records of somatic mutations found in human cancer cells. This tool supports both flexible, user-specified queries and standard (‘canned’) queries to retrieve frequently used combinations of data for user-specified proteins and reactions. We demonstrate using the Wnt signaling pathway and the human c-SRC protein how the tool can be used to place somatic mutation data into a functional perspective by changing critical residues involved in pathway modulation, and where available, check for mass spectrometry evidence in PRIDE supporting identification of the critical residue. Database URL: http://www.reactome.org/cgi-bin/mart