Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bijay Kumar Poudel is active.

Publication


Featured researches published by Bijay Kumar Poudel.


International Journal of Pharmaceutics | 2013

Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique.

Nirmal Marasini; Tuan Hiep Tran; Bijay Kumar Poudel; Hyuk Jun Cho; Young Keun Choi; Sang-Cheol Chi; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

The present study was undertaken to overcome the problems associated with solubility, dissolution and oral bioavailability of a poorly water-soluble ionizable drug, telmisartan (TMS). For these purposes, a solubility test was carried to select the appropriate formulation composition from various carriers and alkalizers. Solid dispersions (SDs) of TMS were prepared at different drug-to-carrier ratios by the spray-drying technique, and were characterized by dissolution and aqueous solubility studies. The optimum formulation was investigated by dissolution studies at different pH and water media and its solid state characterisations were performed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. In solubility and dissolution tests, all TMS-loaded pH-modulated SDs (pH(M)-SDs) exhibited marked improvement in the dissolution behavior when compared with crystalline TMS powder. The optimum formulation of pH(M)-SD consisted of TMS/PVP (polyvinylpyrrolidone) K30/Na(2)CO(3) at a weight ratio of 2/0.5/3 and showed significant improvement in the aqueous solubility and dissolution rate by approximately 40,000- and 3-fold, respectively, compared to TMS powder. Solid-state characterization revealed the changed in crystallinity of TMS into amorphous state. Furthermore, area under the drug concentration time-curve (AUC) of TMS from the pH(M)-SD increased by 13.4- and 2.1-fold, compared with TMS powder and commercial product, respectively. According to these observations, taken together with dissolution and pharmacokinetic behaviors, pH-modulated SD in the presence of an alkalizer for a poorly water-soluble ionizable drug, TMS, appeared to be efficacious for enhancing its bioavailability.


International Journal of Pharmaceutics | 2013

Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent

Tuan Hiep Tran; Bijay Kumar Poudel; Nirmal Marasini; Sang-Cheol Chi; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble drug, raloxifene by solid dispersion (SD) nanoparticles using the spray-drying technique. These spray-dried SD nanoparticles were prepared with raloxifene (RXF), polyvinylpyrrolidone (PVP) and Tween 20 in water. Reconstitution of optimized RXF-loaded SD nanoparticles in pH 1.2 medium showed a mean particle size of approximately 180 nm. X-ray diffraction and differential scanning calorimetry indicated that RXF existed in an amorphous form within spray-dried nanoparticles. The optimized formulation showed an enhanced dissolution rate of RXF at pH 1.2, 4.0, 6.8 and distilled water as compared to pure RXF powder. The improved dissolution of raloxifene from spray-dried SD nanoparticles appeared to be well correlated with enhanced oral bioavailability of raloxifene in rats. Furthermore, the pharmacokinetic parameters of the spray-dried SD nanoparticles showed increased AUC(0-∞) and C(max) of RXF by approximately 3.3-fold and 2.3-fold, respectively. These results suggest that the preparation of RXF-SD nanoparticles using the spray drying technique without organic solvents might be a promising approach for improving the oral bioavailability of RXF.


Journal of Controlled Release | 2017

Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review

Thiruganesh Ramasamy; Hima Bindu Ruttala; Biki Gupta; Bijay Kumar Poudel; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

This review focuses on the smart chemistry that has been utilized in developing polymer-based drug delivery systems over the past 10years. We provide a comprehensive overview of the different functional moieties and reducible linkages exploited in these systems, and outline their design, synthesis, and application from a therapeutic efficacy viewpoint. Furthermore, we highlight the next generation nanomedicine strategies based on this novel chemistry.


Journal of Pharmaceutical Sciences | 2012

Development and Optimization of Self‐Nanoemulsifying Drug Delivery System with Enhanced Bioavailability by Box–Behnken Design and Desirability Function

Nirmal Marasini; Yi Dong Yan; Bijay Kumar Poudel; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

The aim of our study was to characterize and optimize a self-nanoemulsifying drug delivery system (SNEDDS) formulation by a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors were the amounts of Capryol PGMC (X(1)), Tween 20 (X(2)), and Transcutol HP (X(3)). The dependent variables were droplet size (Y(1)), equilibrium solubility (Y(2)), and cumulative percentage of drug released in 15 min (Y(3)) from the SNEDDS formulation. The responses were fitted to a second-order quadratic model and statistical validation of the fitted models was carried out by analysis of variance. Various response surface graphs and contour plots were constructed to understand the effects of different factor level combinations on the responses. The optimized SNEDDS formulation consisting of Capryol PGMC-Tween 20-Transcutol HP at proportions of 5:58.4:40 (w/w) was prepared and a comparison of the predicted values and experimental values was found to be in close agreement. Furthermore, an in vivo pharmacokinetic study of the optimized SNEDDS formulation showed a 2.2-fold increase in relative oral bioavailability compared with that of the suspension. In conclusion, the BBD demonstrated its effectiveness in optimizing the SNEDDS formulation and in understanding the effects of formulation variables on the performance of SNEDDS.


Drug Development and Industrial Pharmacy | 2013

Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems

Gun Gook Kim; Bijay Kumar Poudel; Nirmal Marasini; Dong Won Lee; Tran Tuan Hiep; Kwan Yeol Yang; Jong Oh Kim; Chul Soon Yong; Han-Gon Choi

A solid form of self-microemulsifying drug delivery system (Solid SMEDDS) was developed by spray-drying with dextran as the inert solid carrier, to improve the oral bioavailability of a poorly water-soluble drug, fenofibrate. The optimized liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Capryol PGMC (15/75/10%v/v) with 10% w/v fenofibrate gave a z-average diameter of around 240 nm. There was no significant difference in the mean droplet size and size distribution of the emulsions obtained from the liquid and solid forms of SMEDDS. Solid state characterizations of solid SMEDDS showed that the crystal state of fenofibrate in solid SMEDDS was converted from crystalline to amorphous form. Solid SMEDDS had significantly higher dissolution rates than the drug powder, due to its fast self-emulsification in the dissolution media. Furthermore, the AUC value of solid SMEDDS was twofold greater than that of the powder, indicating this formulation greatly improved the oral bioavailability of drug in rats. Thus, these results suggest that solid SMEDDS could be used as an effective oral solid dosage form to improve dissolution and oral bioavailability of fenofibrate.


Archives of Pharmacal Research | 2013

A novel surface-attached carvedilol solid dispersion with enhanced solubility and dissolution

Sung Neung Lee; Bijay Kumar Poudel; Tuan Hiep Tran; Nirmal Marasini; Roshan Pradhan; Young Im Lee; Dong Won Lee; Jong Soo Woo; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

A novel surface-attached, spray-dried solid dispersion containing poorly water-soluble carvedilol (CV) without any change in the crystallinity was prepared using water, polyvinylpyrrolidone (PVP K30) and Tween 80. The solid dispersion was optimized by investigating the effects of the weight ratios of Tween 80/PVP K30 and carrier/drug on the aqueous solubility of CV. The optimum solid dispersion consisted of a relatively low carrier to drug weight ratio: the weight ratio of CV/PVP K30/Tween 80 was 12/4/2. Unlike conventional methods of solid dispersion preparation, this method yielded CV-loaded solid dispersion with no change in the crystallinity of the drug as was evident from SEM, DSC and XRD. It was demonstrated that the solid dispersions prepared had hydrophilic carriers attached to the surface of the drug, thus changing it from a hydrophobic to a hydrophilic form without changing the crystalline form. The optimized solid dispersion improved the drug solubility and dissolution rate by about 11,500-fold and twofold, respectively. It was further suggested that this method of solid dispersion preparation is better than conventional methods in terms of environmental and industrial standpoints. Thus, it was concluded that CV-loaded solid dispersion prepared using this method would be of use for delivering poorly water-soluble CV with enhanced solubility and dissolution, but without crystalline changes.


ACS Applied Materials & Interfaces | 2015

Multilayer-Coated Liquid Crystalline Nanoparticles for Effective Sorafenib Delivery to Hepatocellular Carcinoma.

Raj Kumar Thapa; Ju Yeon Choi; Bijay Kumar Poudel; Tran Tuan Hiep; Shiva Pathak; Biki Gupta; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Hepatocellular carcinoma is one of the most common cancers in adults and develops due to activation of oncogenes and inactivation of tumor suppressor genes. Sorafenib (SF) is a U.S. Food and Drug Administration (FDA) approved drug for the treatment of hepatocellular carcinoma. However, its clinical use is limited by its poor aqueous solubility and undesirable side effects. Monoolein-based liquid crystalline nanoparticles (LCN) are self-assembled structures that have been determined as promising drug-delivery vehicles. Therefore, the main aim of this study was to prepare layer-by-layer (LbL) polymer-assembled SF-loaded LCNs (LbL-LCN/SF) for effective delivery of SF to hepatocellular carcinoma. Results revealed that LbL-LCN/SF presented optimum particle size (∼165 nm) and polydispersity index (PDI, ∼0.14) with appropriate polymer layer assembly confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, LbL-LCN/SF effectively controlled burst release and exhibited pH-sensitive release of SF, thereby increasing drug release in the acidic microenvironment of tumor cells. Compared to free SF and bare LCN, the hemolytic activity of LbL-LCN/SF was significantly reduced (p<0.01). Interestingly, LbL-LCN/SF was more cytotoxic to HepG2 cells than the free drug was. Additionally, high cellular uptake and greater apoptotic effects of LbL-LCN/SF in HepG2 cells indicates superior antitumor effects. Therefore, LbL-LCN/SF is a potentially effective formulation for hepatocellular carcinoma.


Carbohydrate Polymers | 2015

Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin

Roshan Pradhan; Thiruganesh Ramasamy; Ju Yeon Choi; Jeong Hwan Kim; Bijay Kumar Poudel; Jin Wook Tak; Natalia Nukolova; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.


International Journal of Pharmaceutics | 2012

Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique.

Young Keun Choi; Bijay Kumar Poudel; Nirmal Marasini; Kwan Yeol Yang; Jeong Whan Kim; Jong Oh Kim; Han-Gon Choi; Chul Soon Yong

The objective of the present study was to enhance solubility and bioavailability of itraconazole by a combined use of membrane emulsification and spray drying solidification technique. A shirasu-porous-glass (SPG) membrane with a mean pore size of 2.5 μm was used to produce monodispersed microemulsions of itraconazole consisting of methylene chloride as the dispersed phase, a mixture of Transcutol HP and Span 20 as a stabilizer, and dextran as solid carrier dissolved in water as the continuous phase. The dispersed phase permeated through the SPG membrane into the continuous phase at an agitator speed of 150 rpm, a feed pressure of 15 kPa and a continuous phase temperature of 25°C and the resultant emulsion was solidified using spray-drying technique. Solid state characterizations of the solid emulsion showed that the crystal state of itraconazole in solid emulsion was converted from crystalline to amorphous form. The solid emulsion of itraconazole displayed a significant increase in the dissolution rate than that of pure itraconazole. Furthermore, the solid emulsion after oral administration gave about eight-fold higher AUC and about ten-fold higher C(max) in rats than pure itraconazole powder (p<0.05), indicating this formulation greatly improved the oral bioavailability of drug in rats. Thus, these results demonstrated that the SPG membrane emulsification system combined with spray-drying technique could be used as a promising technique to develop solid formulation of itraconazole with enhanced solubility and bioavailability.


ACS Applied Materials & Interfaces | 2017

Development of Bioactive PEGylated Nanostructured Platforms for Sequential Delivery of Doxorubicin and Imatinib to Overcome Drug Resistance in Metastatic Tumors

Biki Gupta; Thiruganesh Ramasamy; Bijay Kumar Poudel; Shiva Pathak; Shobha Regmi; Ju Yeon Choi; Youlim Son; Raj Kumar Thapa; Jee-Heon Jeong; Jae Ryong Kim; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Metastasis of cancers accounts for almost all cancer-related deaths. In this study, we report a PEGylated nanostructured platform for coadministration of doxorubicin (DOX) and imatinib (IMT) intended to effectively inhibit metastatic tumors. The DOX and IMT coloaded nanostructured system (DOX/IMT-N) is characterized by an excellent encapsulation potential for both drugs and shows sequential and sustained drug release in vitro. DOX/IMT-N significantly inhibited the in vitro proliferation of MDA-MB-231 and SK-MEL-28 cells. The inhibitory effect on in vitro proliferation of the cells was significantly greater than the effect of free DOX, DOX/IMT cocktail, or the nanostructured system housing DOX only (DOX-N). DOX/IMT-N remarkably enhanced cellular drug uptake, resulting in enhanced apoptosis, caused by significant increases in the expression levels of apoptotic marker proteins. Intravenous administration of DOX/IMT-N to MBA-MB-231 xenograft tumor-bearing mice resulted in significantly improved inhibition of tumor progression compared to that with DOX, DOX/IMT, or DOX-N. Therefore, the nanostructured DOX/IMT-N system could potentially aid in overcoming drug resistance in metastatic tumors and improve the effectiveness of metastatic tumor therapeutics.

Collaboration


Dive into the Bijay Kumar Poudel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge