Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thiruganesh Ramasamy is active.

Publication


Featured researches published by Thiruganesh Ramasamy.


Acta Biomaterialia | 2014

Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs

Thiruganesh Ramasamy; Ziyad S. Haidar; Tuan Hiep Tran; Ju Yeon Choi; Jee-Heon Jeong; Beom Soo Shin; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Layer-by-layer (LbL)-engineered nanoparticles (NPs) are a promising group of therapeutic carriers used in an increasing number of biomedical applications. The present study uses a controlled LbL process to create a multidrug-loaded nanoplatform capable of promoting blood circulation time, biodistribution profile and controlling drug release in the dynamic systemic environment. LbL assembly is achieved by sequential deposition of poly-l-lysine (PLL) and poly(ethylene glycol)-block-poly(l-aspartic acid) (PEG-b-PLD) on liposomal nanoparticles (LbL-LNPs). This generates spherical and stable multilayered NPs ∼240nm in size, enabling effective systemic administration. The numerous functional groups and compartments in the polyelectrolyte shell and core facilitate loading with doxorubicin and mitoxantrone. The nanoarchitecture effectively controls burst release, providing different release kinetics for each drug. LbL-LNPs are pH-sensitive, indicating that intracellular drug release can be increased by the acidic milieu of cancer cells. We further demonstrate that the LbL nanoarchitecture significantly reduces the elimination rates of both drugs tested and markedly extends their systemic circulation times, paving the way for efficacious tumor drug delivery. Because this delivery system accommodates multiple drugs, improves drug half-life and diminishes burst release, it provides an exciting platform with remarkable potential for combination therapeutics in cancer therapy.


Carbohydrate Polymers | 2014

Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery

Thiruganesh Ramasamy; Tuan Hiep Tran; Ju Yeon Choi; Hyuk Jun Cho; Jeong Hwan Kim; Chul Soon Yong; Han-Gon Choi; Jong Oh Kim

Polyelectrolyte multilayers created via sequential adsorption of complimentary materials may be useful in the delivery of small molecules such as anti-cancer drugs. In this study, layer-by-layer (LbL) nanoarchitectures were prepared by step-wise deposition of naturally derived chitosan and hyaluronic acid on negatively charged hybrid solid lipid nanoparticles (SLNs). A doxorubicin/dextran sulfate complex was incorporated into the SLNs. This resulted in the production of spherical nanoparticles ∼ 265 nm in diameter, with a zeta potential of approximately -12 mV. The nanoparticles were physically stable and exhibited controlled doxorubicin (DOX) release kinetics. Further pharmacokinetic manipulations revealed that in comparison with both free DOX and uncoated DOX-loaded SLNs, LbL-functionalized SLNs remarkably enhanced the circulation half-life and decreased the elimination rate of the drug. Cumulatively, our results suggest that this novel LbL-coated system, with a pH-responsive shell and molecularly targeted entities, has the potential to act as a vehicle to deliver medication to targeted tumor regions.


International Journal of Pharmaceutics | 2013

Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect

Youn Gee Seo; Dae Hwan Kim; Thiruganesh Ramasamy; Jeong Hwan Kim; Nirmal Marasini; Yu-Kyoung Oh; Dong-Wuk Kim; Jin-Ki Kim; Chul Soon Yong; Jong Oh Kim; Han-Gon Choi

The main purpose of this study was to investigate the potential of self-nano-emulsifying drug delivery system (SNEDDS) in improving the bioavailability of docetaxel (DCT) and its chemotherapeutic effect. The DCT-loaded SNEDDS was prepared by employing rational blends of capryol 90, labrasol, and transcutol HP using ternary phase diagram. The liquid nano-emulsion was spray-dried into solid SNEDDS (D-SNEDDS) using an inert porous carrier, colloidal silica. The optimized formulation was characterized in terms of physico-chemical and pharmacokinetic parameters. Furthermore, anti-tumor efficacy of D-SNEDDS was compared with commercial marketed product, Taxotere(®). The various compositions of SNEDDS were screened and found optimal at a volume ratio of 10/75/15 for capryol 90, labrasol, and transcutol HP, respectively. We observed a high oral bioavailability of 17% DCT for D-SNEDDS than compared to only 2.6% for pure DCT solution. Notably, D-SNEDDS exhibited an augmented anti-tumor efficacy with a reduced toxicity profile when compared with intravenously administered Taxotere(®), the commercialized formulation of DCT. Taken together, D-SNEDDS could be a potential candidate for an oral dosage form of DCT with enhanced antitumor activity and reduced toxicity.


Journal of Materials Chemistry B | 2014

pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy

Thiruganesh Ramasamy; Jeong Hwan Kim; Ju Yeon Choi; Tuan Hiep Tran; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

The co-encapsulation of two or more drugs in the same carrier affords synergistic therapeutic effects and enhanced therapeutic potency. For this, polyethylene oxide-b-polyacrylic acid di-block polymer based-smart pH-sensitive di-block polyelectrolyte complex (PEC) micelles were designed to encapsulate mitoxantrone (MTX) and doxorubicin (DOX) with high payload capacity and precise drug ratio. Three molar ratios (MTX/DOX: 2 : 1, 1 : 1, 1 : 2) of the drug-loaded PECs were prepared with high payload capacity and evaluated for various physicochemical characteristics. The dual drug combination exhibited a synergistic cytotoxic activity against both sensitive (MCF-7 and A-549) and resistant cancer cell lines (MDA-MB-231), unlike the individual drugs. Dual drug-loaded nanosystems (MTX/DOX-M) prolonged the blood circulation of drugs, and a synergic ratio was maintained throughout the study period. MTX/DOX-M exhibited superior therapeutic efficacy in xenograft models; by contrast, the free drug cocktail caused a significant loss of body weight in mice. Taken together, our results suggest that PEC micelles have great potential as nano-scaled therapeutic delivery systems for combination chemotherapy.


Carbohydrate Polymers | 2014

Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells.

Tuan Hiep Tran; Ju Yeon Choi; Thiruganesh Ramasamy; Duy Hieu Truong; Chien Ngoc Nguyen; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Hyaluronic acid (HA)-decorated solid lipid nanoparticles (SLNs) were developed for tumor-targeted delivery of vorinostat (VRS), a histone deacetylase inhibitor. HA, a naturally occurring polysaccharide, which specifically binds to the CD44 receptor, was coated on a cationic lipid core through electrostatic interaction. After the optimization process, HA-coated VRS-loaded SLNs (HA-VRS-SLNs) were spherical, core-shell nanoparticles, with small size (∼100 nm), negative charge (∼-9 mV), and narrow size distribution. In vitro release profile of HA-VRS-SLNs showed a typical bi-phasic pattern. In addition, the intracellular uptake of HA-VRS-SLNs was significantly enhanced in CD44 overexpressing cells, A549 and SCC-7 cells, but reduced when HA-VRS-SLNs were incubated with SCC-7 cells pretreated with HA or MCF-7 cells with low over-expressed CD44. Of particular importance, HA-VRS-SLNs were more cytotoxic than the free drug and VRS-SLNs in A549 and SCC-7 cells. In addition, HA shell provided longer blood circulation and reduced VRS clearance rate in rats, resulting in enhanced higher plasma concentration and bioavailability. These results clearly indicated the potential of the HA-functionalized lipid nanoparticle as a nano-sized drug formulation for chemotherapy.


Macromolecular Research | 2012

Development of Solid Lipid Nanoparticles Enriched Hydrogels for Topical Delivery of Anti-Fungal Agent

Thiruganesh Ramasamy; Umadevi S. Khandasami; Himabindhu Ruttala; Suresh Shanmugam

AbstractThe aim of this study was to formulate and evaluate Ketoconazole-loaded solid lipid nanoparticles (KSLN) for topical application. The purpose of this study was to improve the therapeutic activity of Ketoconazole. KSLN was prepared by a hot homogenization method and characterized for shape, surface morphology, particle size, drug entrapment, cytotoxicity, and rheological analysis. The optimized formulation of solid lipid nanoparticles (SLN) was spherical in shape with a smooth surface and possessed an average size of 172.2±0.75 nm with zeta potential of -44.12±0.76 mV. To guarantee the stability of the desired SLN, they were lyophilized using cryo-protectants. The particle size of the SLN significantly enlarged for formulations which were lyophilized without the cryo-protectants. Cell viability assay performed on National Institute of Health-3-day transfer, inoculum 3×105 cells (NIH-3T3) fibroblast cells showed that properties of the SLN remain unchanged during the process of freeze-drying and were not cytotoxic. An in vitro drug release study showed that KSLN-incorporated hydrogel exhibited a sustained drug release comparing to KSLN dispersion and Ketoconazole loaded hydrogel over a 24 h period. The in vivo studies suggested that the KSLN-incorporated hydrogel was more efficient in the treatment of candidiasis. It may therefore be interpreted that the KSLN-incorporated hydrogel provides a sustained release of Ketoconazole for topical fungal infections and might be a promising delivery system to enhance the therapeutic activity of Ketoconazole.


International Journal of Nanomedicine | 2015

Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells

Tuan Hiep Tran; Thiruganesh Ramasamy; Ju Yeon Choi; Hanh Thuy Nguyen; Thanh Tung Pham; Jee-Heon Jeong; Sae Kwang Ku; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

The attachment of polyethylene glycol (PEG) increases the circulation time of drug-containing nanoparticles; however, this also negatively affects cellular uptake. To overcome this problem, unique lipid polymer hybrid (LPH) nanoparticles were developed with a pH-responsive PEG layer that detached prior to cell uptake. Docetaxel (DTX) was incorporated into the lipid core of the nanoparticles, which was then shielded with the pH-responsive block co-polymer polyethylene glycol-b-polyaspartic acid (PEG-b-PAsp) using a modified emulsion method. The optimized LPH nanoparticles were ~200 nm and had a narrow size distribution. Drug release from DTX-loaded LPH (DTX-LPH) nanoparticles was pH-sensitive, which is beneficial for tumor targeting. More importantly, DTX-LPH nanoparticles were able to effectively induce apoptosis in cancer cells. The negative surface charge and PEG shell of vehicle remarkably enhanced the blood circulation and physiological activity of DTX-LPH nanoparticles compared with that of free DTX. The nanoparticles were also found to reduce the size of tumors in tumor-bearing xenograft mice. The in vivo anticancer effect of DTX-LPH nanoparticles was further confirmed by the elevated levels of caspase-3 and poly ADP ribose polymerase found in the tumors after treatment. Thus, the results suggest that this novel LPH system could be an effective new treatment for cancer.


Acta Biomaterialia | 2016

PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy

Ju Yeon Choi; Thiruganesh Ramasamy; Sung Yub Kim; Jeong Hwan Kim; Sae Kwang Ku; Yu Seok Youn; Jae-Ryong Kim; Jee-Heon Jeong; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

UNLABELLED Small-molecule drug combination therapies are an attractive approach to enhancing cancer chemotherapeutic responses. Therefore, this study aimed to investigate the potential of axitinib (AXT) and celastrol (CST) in targeting angiogenesis and mitochondrial-based apoptosis in cancer. Therefore, we prepared AXT/CST-loaded combination nanoparticles (ACML) with CST loaded in the mesoporous silica nanoparticles (MSN) and AXT in PEGylated lipidic bilayers. We showed that ACML effectively inhibited angiogenesis and mitochondrial function and was efficiently internalized in SCC-7, BT-474, and SH-SY5Y cells. Furthermore, hypoxia-inducible factor (HIF)-1α expression, which increased under hypoxic conditions in all cell lines exposed to ACML, markedly decreased, which may be critical for tumor inhibition. Western blotting showed the superior anticancer effect of combination nanoparticles in different cancer cells. Compared to the cocktail (AXT/CST), ACML induced synergistic cancer cell apoptosis. The AXT/CST-based combination nanoparticle synergism might be mediated by AXT, which controls vascular endothelial growth factor receptors while CST acts on target cell mitochondria. Importantly, ACML-treated mice showed remarkably higher tumor inhibition (64%) than other groups did in tumor xenograft models. Tumor xenograft immunohistochemistry revealed elevated caspase-3 and poly (ADP-ribose) polymerase and reduced CD31 and Ki-67 expression, clearly suggesting tumor apoptosis through mitochondrial and antiangiogenic effects. Overall, our results indicate that ACML potentially inhibited cell proliferation and induced apoptosis by blocking mitochondrial function, leading to enhanced antitumor efficacy. STATEMENT OF SIGNIFICANCE In this research, we formulated an anticancer drug combination nanoparticle loaded with axitinib (AXT) in the lipidic bilayer of PEGylated liposomes and celastrol (CST) in mesoporous silica nanoparticles. The anticancer effects of the AXT/CST-loaded combination nanoparticle (ACML) were synergistic and superior to the other formulations and involved more efficient drug delivery to the tumor site with enhanced effects on angiogenesis and mitochondrial function. Therefore, our study demonstrated that the inhibition of cell proliferation and induction of apoptosis by ACML, which was mediated by blockade of mitochondrial function and anti-angiogenesis, led to enhanced antitumor efficacy, which may be potentially useful in the clinical treatment of cancer.


Acta Biomaterialia | 2017

Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors

Thiruganesh Ramasamy; Hima Bindu Ruttala; Nataraj Chitrapriya; Bijay Kumar Poudal; Ju Yeon Choi; Ssang Tae Kim; Yu Seok Youn; Sae Kwang Ku; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

In this study, we report a facile method to construct a bioactive (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) polypeptide nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The smart pH-sensitive nanovehicle was fabricated with precisely tailored drug-to-carrier ratio that resulted in accelerated, sequential drug release. As a result of ratiometric loading, QUR could significantly enhance the cytotoxic potential of DOX, induced marked cell apoptosis; change cell cycle patterns, inhibit the migratory capacity of sensitive and resistant cancer cells. In particular, pro-oxidant QUR from DQ-NV remarkably reduced the GSH/GSSG ratio, indicating high oxidative stress and damage to cellular components. DQ-NV induced tumor shrinkage more effectively than the single drugs in mice carrying subcutaneous SCC-7 xenografts. DQ-NV consistently induced high expression of caspase-3 and PARP and low expression of Ki67 and CD31 immunomarkers. In summary, we demonstrate the development of a robust polypeptide-based intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy. STATEMENT OF SIGNIFICANCE In this study, we report a facile method to construct bioactive and biodegradable polypeptide nanovehicles as an advanced platform technology for application in cancer therapy. We designed a robust (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The conformational changes of the histidine block at tumor pH resulted in accelerated, sequential drug release. QUR could significantly enhance the cytotoxic potential of DOX, induce marked cell apoptosis, change cell cycle patterns, and inhibit the migratory capacity of sensitive and resistant cancer cells. DQ-NV induced tumor shrinkage more effectively than the single drugs and the 2-drug cocktail in tumor xenografts. In summary, we demonstrate the development of an intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy.


Carbohydrate Polymers | 2015

Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin

Roshan Pradhan; Thiruganesh Ramasamy; Ju Yeon Choi; Jeong Hwan Kim; Bijay Kumar Poudel; Jin Wook Tak; Natalia Nukolova; Han-Gon Choi; Chul Soon Yong; Jong Oh Kim

Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.

Collaboration


Dive into the Thiruganesh Ramasamy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge